ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
  • Man/System Technology and Life Support  (2)
Collection
  • Other Sources  (2)
Years
  • 1
    Publication Date: 2019-07-12
    Description: A laboratory apparatus has been devised as a means of studying plausible biogeochemical reactions under high-pressure, low-temperature aqueous, anaerobic conditions like those conjectured to prevail in a liquid water ocean on Europa (the fourth largest moon of the planet Jupiter). The experiments to be performed by use of this apparatus are intended to enhance understanding of how life (if any) could originate and evolve in the Europa ocean environment. Inasmuch as terrestrial barophilic, psychrophilic organisms that thrive under anaerobic conditions are used in the experiments, the experiments may also contribute to terrestrial biogeochemistry. The apparatus (see figure) includes a bolt-closure reaction vessel secured inside a refrigerator that maintains a temperature of 4 C. Pressurized water is supplied to the interior of the vessel by a hydrostatic pump, which is attached to the vessel via high-pressure fittings. The terrestrial organisms used in the experiments thus far have been several facultative barophilic, psychrophilic stains of Shewanella bacteria. In the experiments, these organisms have been tested for reduction of ferric ion by growing them in the presence of a ferric food source under optimized terrestrial conditions. The short-term goal of these experiments has been to select Shewanella strains that exhibit iron-reduction capability and test their ability to facilitate biogeochemical reduction of iron under temperature and pressure conditions imitating those in Europa s ocean. It is anticipated, that, once growth under Europa-like conditions has been achieved, the selected Shewanella strains will be used to facilitate biogeochemical reactions of sulfate and carbonate with hydrogen gas. Any disequilibrium of the products with the environment would be interpreted as signifying biogenic activity and the possibility of life in Europa s ocean.
    Keywords: Man/System Technology and Life Support
    Type: NPO-45538 , NASA Tech Briefs, March 2010; 43
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: A proposed device, denoted a miniature microfluidic biomarker extractor (mu-EX), would extract trace amounts of chemicals of interest from samples, such as soils and rocks. Traditionally, such extractions are performed on a large scale with hazardous organic solvents; each solvent capable of dissolving only those molecules lying within narrow ranges of specific chemical and physical characteristics that notably include volatility, electric charge, and polarity. In contrast, in the mu-EX, extractions could be performed by use of small amounts (typically between 0.1 and 100 L) of water as a universal solvent. As a rule of thumb, in order to enable solvation and extraction of molecules, it is necessary to use solvents that have polarity sufficiently close to the polarity of the target molecules. The mu-EX would make selection of specific organic solvents unnecessary, because mu-EX would exploit a unique property of liquid water: the possibility of tuning its polarity to match the polarity of organic solvents appropriate for extraction of molecules of interest. The change of the permittivity of water would be achieved by exploiting interactions between the translational states of water molecules and an imposed electromagnetic field in the frequency range of 300 to 600 GHz. On a molecular level, these interactions would result in disruption of the three-dimensional hydrogen-bonding network among liquid-water molecules and subsequent solvation and hydrolysis of target molecules. The mu-EX is expected to be an efficient means of hydrolyzing chemical bonds in complex macromolecules as well and, thus, enabling analysis of the building blocks of these complex chemical systems. The mu-EX device would include a microfluidic channel, part of which would lie within a waveguide coupled to an electronically tuned source of broad-band electromagnetic radiation in the frequency range from 300 to 600 GHz (see figure). The part of the microfluidic channel lying in the waveguide would constitute an interaction volume. The dimensions of the interaction volume would be chosen in accordance with the anticipated amount of solid sample material needed to ensure extraction of sufficient amount of target molecules for detection and analysis. By means that were not specified at the time of reporting the information for this article, the solid sample material would be placed in the interaction volume. Then the electromagnetic field would be imposed within the waveguide and water would be pumped through the interaction volume to effect the extraction.
    Keywords: Man/System Technology and Life Support
    Type: NPO-46150 , NASA Tech Briefs, May 2009; 50-51
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...