ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0983
    Keywords: Key wordsMAL-activator ; Maltose fermentation ; Saccharomyces
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract MAL63 of the MAL6 locus and its homologues at the other MAL loci encode transcription activators required for the maltose-inducible expression of the MAL structural genes. We carried out a deletion analysis of LexA-MAL63 gene fusions to localize the functional domains of the Mal63 MAL-activator protein. Our results indicate that the sequence-specific DNA-binding domain of Mal63p is contained in residues 1–100; that residues 60–283 constitute a functional core region including the transactivation domain; that residues 251–299 are required to inhibit the activation function of Mal63p; and that the rest of the C-terminal region of the protein contains a maltose-responsive domain that acts to relieve the inhibitory effect on the activation function. Abundant overproduction of Mal63p does not overcome the negative regulation of MAL gene expression in the absence of maltose, suggesting that a titratable MAL-specific repressor similar to Gal80p is not involved in the negative regulation of the MAL-activator. A model for maltose-inducible autoregulation of the MAL-activator is presented.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0983
    Keywords: Key wordsMAL-activator ; Constitutive mutations ; Maltose fermentation ; Saccharomyces
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The Saccharomyces MAL-activator regulates the maltose-inducible expression of the MAL structural genes encoding maltose permease and maltase. Constitutive MAL-activator mutant alleles of two types were identified. The first were truncation mutations deleting C-terminal residues 283–470 and the second contained a large number of alterations compared to inducible alleles scattered throughout the C-terminal 200 residues. We used site-directed in vitro mutagenesis of the inducible MAL63 and MAL63/23 genes to identify the residues responsible for the negative regulatory function of the C-terminal domain. Intragenic suppressors that restored the inducible phenotype to the constitutive mutants were identified at closely linked and more distant sites within the MAL-activator protein. MAL63/mal64 fusions of the truncated mutants suggest that residues in the N-terminal 100 residues containing the DNA-binding domain also modulate basal expression. Moreover, a transcription activator protein consisting of LexA(1–87)-Gal4(768–881)-Mal63(200–470) allowed constitutive reporter gene expression, suggesting that the C-terminal regulatory domain is not sufficient for maltose-inducible control of this heterologous activation domain. These results suggest that complex and very specific intramolecular protein–protein interactions regulate the MAL-activator.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: To enable effective management, planning, and operations for future missions that involve a crewed space habitat, operational support must be migrated from Earth to the habitat. Intelligent System Health Management technologies (ISHM) promise to enable the future space habitats to increase the safety and mission success while minimizing operational risks. In this paper, Water Recycling System (WRS) deployed at NASA Ames Research Center's Sustainability Base is used for verification and validation of the proposed solution. Our work includes the development of the WRS simulation model based on its dynamic physical characteristics and the design of Automatic Contingency Management (ACM) framework that integrates fault diagnosis and optimization. In WRS modeling, a nominal model with fault injectors is developed. Fault detection and isolation techniques are then developed for isolating causes and identifying the severity of the faults. Dynamic Programming (DP) based fault mitigation strategies are designed to accommodate the faults in the system. A series of simulations are presented with different fault modes and the results indicate that the proposed ACM system can alleviate the fault in the WRS optimally regarding energy consumption and effects of the fault.
    Keywords: Man/System Technology and Life Support
    Type: ARC-E-DAA-TN60675 , Annual Conference of the Prognostics and Health Management Society 2018; Sep 24, 2018 - Sep 28, 2018; Philadelphia, PA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...