ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    International journal of earth sciences 88 (1999), S. 422-443 
    ISSN: 1437-3262
    Keywords: Key words Odenwald ; Mid-German Crystalline Rise ; Magmatic arc ; Subduction ; Granitoid genesis ; O ; Sr ; Nd isotope systematics ; High-K granitoids ; Monzonitic suite
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  Latest Devonian to early Carboniferous plutonic rocks from the Odenwald accretionary complex reflect the transition from a subduction to a collisional setting. For ∼362 Ma old gabbroic rocks from the northern tectonometamorphic unit I, initial isotopic compositions (εNd=+3.4 to +3.8;87Sr/86Sr =0.7035–0.7053;δ18O=6.8–8.0‰) and chemical signatures (e.g., low Nb/Th, Nb/U, Ce/Pb, Th/U, Rb/Cs) indicate a subduction-related origin by partial melting of a shallow depleted mantle source metasomatized by water-rich, large ion lithophile element-loaded fluids. In the central (unit II) and southern (unit III) Odenwald, syncollisional mafic to felsic granitoids were emplaced in a transtensional setting at approximately 340–335 Ma B.P. Unit II comprises a mafic and a felsic suite that are genetically unrelated. Both suites are intermediate between the medium-K and high-K series and have similar initial Nd and Sr signatures (εNd=0.0 to –2.5;87Sr/86Sr=0.7044–0.7056) but different oxygen isotopic compositions (δ18O=7.3–8.7‰ in mafic vs 9.3–9.5‰ in felsic rocks). These characteristics, in conjunction with the chemical signatures, suggest an enriched mantle source for the mafic magmas and a shallow metaluminous crustal source for the felsic magmas. Younger intrusives of unit II have higher Sr/Y, Zr/Y, and Tb/Yb ratios suggesting magma segregation at greater depths. Mafic high-K to shoshonitic intrusives of the southern unit III have initial isotopic compositions (εNd=–1.1 to –1.8;87Sr/86Sr =0.7054–0.7062;δ18O=7.2–7.6‰) and chemical characteristics (e.g., high Sr/Y, Zr/Y, Tb/Yb) that are strongly indicative of a deep-seated enriched mantle source. Spatially associated felsic high-K to shoshonitic rocks of unit III may be derived by dehydration melting of garnet-rich metaluminous crustal source rocks or may represent hybrid magmas.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    International journal of earth sciences 85 (1996), S. 211-224 
    ISSN: 1437-3262
    Keywords: Garnet-spinel peridotite ; Geothermobarometry ; Schwarzwald ; Variscan orogen ; Moldanubian
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Garnet-spinel peridotites form small, isolated, variably retrogressed bodies within the low-pressure high-temperature gneisses and migmatites of the Variscan basement of the Schwarzwald, southwest Germany. Detailed mineralogical and textural studies as well as geothermobarometric calculations on samples from three occurrences are presented. Two of the garnet-spinel peridotites have equilibrated at 680–770°C, 1.4–1.8 GPa within the garnet-spinel peridotite stability field, one of the samples having experienced an earlier stage within the spinel peridotite stability field (790°C, 〈1.8 GPa). The third sample, with only garnet and spinel preserved, probably equilibrated within the garnet peridotite stability field at higher pressures. These findings are in line with the distinction of two groups of ultramafic garnet-bearing high-pressure rocks with different equilibration conditions within the Schwarzwald (670–740°C, 1.4–1.8 GPa and 740–850°C, 3.2–4.3 GPa) which has previously been established (Kalt et al. 1995). The equilibration conditions of 670–770°C and 1.4–1.8 GPa for garnet-spinel peridotites from the Central Schwarzwald Gneiss Complex (CSGC) are similar to those for eclogites of the Schwarzwald and also correspond quite well to those for garnet-spinel peridotites from the Moldanubian zone of the Vosges mountains and of ecologites from the Moldanubian s.str. of the Bohemian Massif.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Geologische Rundschau 85 (1996), S. 211-224 
    ISSN: 0016-7835
    Keywords: Key words Garnet-spinel peridotite ; Geothermobarometry ; Schwarzwald ; Variscan orogen ; Moldanubian
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  Garnet-spinel peridotites form small, isolated, variably retrogressed bodies within the low-pressure high-temperature gneisses and migmatites of the Variscan basement of the Schwarzwald, southwest Germany. Detailed mineralogical and textural studies as well as geothermobarometric calculations on samples from three occurrences are presented. Two of the garnet-spinel peridotites have equilibrated at 680–770  °C, 1.4–1.8 GPa within the garnet-spinel peridotite stability field, one of the samples having experienced an earlier stage within the spinel peridotite stability field (790  °C, 〈1.8 GPa). The third sample, with only garnet and spinel preserved, probably equilibrated within the garnet peridotite stability field at higher pressures. These findings are in line with the distinction of two groups of ultramafic garnet-bearing high-pressure rocks with different equilibration conditions within the Schwarzwald (670–740  °C, 1.4–1.8 GPa and 740–850  °C, 3.2–4.3 GPa) which has previously been established (Kalt et al. 1995). The equilibration conditions of 670–770  °C and 1.4–1.8 GPa for garnet-spinel peridotites from the Central Schwarzwald Gneiss Complex (CSGC) are similar to those for eclogites of the Schwarzwald and also correspond quite well to those for garnet-spinel peridotites from the Moldanubian zone of the Vosges mountains and of eclogites from the Moldanubian s.str. of the Bohemian Massif.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...