ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • METEOROLOGY AND CLIMATOLOGY  (2)
Collection
Keywords
Years
  • 1
    Publication Date: 2019-07-13
    Description: An analysis of monthly mean, zonally averaged temperatures from the lower-stratospheric channel of the microwave sounding unit (MSU-4) shows that on the month-to-month time scale, there is nearly complete compensation between temperature changes in the tropics and in the extratropics. For the annual cycle the MSU-4 data show a similar compensation between temperatures in the tropics and those in high latitudes, with only a small residual variation in the global mean. The tropics are coldest in January and warmest in July, compensating for the warmer wintertime temperatues in the Northern Hemisphere compared to those in the Southern Hemisphere. These out-of phase temperature variations betwen the tropics and extratropics are interpreted as the signature of an annual cycle in the strength of the wave-driven, Lagrangian mean meridional circulation, which warms the high-latitude winter hemisphere and cools the tropics. The observed phase of the annual cycle in tropical lower-stratospheric temperatures is thus determined by the stronger orographic and thermal forcing of the wintertime planetary waves in the Northern Hemisphere, which drives a stronger Lagrangian mean meridional circulation. In the absence of fluctuations in the global mean diabatic heating, the compensation would be complete and the globally averaged temperature would be constant. The small annual cycle in the globally averaged temperature in the MSU-4 data is nearly in phase with the annual cycle in the tropics and is consistent with the annual cycle in diabatic heating by ozone.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of the Atmospheric Sciences (ISSN 0022-4928); 51; p. 169-174
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: The coupled atmosphere-ocean system in the equatorial eastern Pacific and Atlantic exhibits a distinct annual cycle that is reflected in contrasting conditions at the times of the two equinoxes. The contrasts are so strong that they dominate the annual march of zonally averaged outgoing long wave radiation for the equatorial belt. The March equinox corresponds to the warm season when the equatorial cold tongues in the eastern Pacific and Atlantic area absent. With the onset of summer monsoon convection over Colombia, Central America, and West Africa in May-June, northward surface winds strengthen over the eastern Pacific and Atlantic, the equatorial cold tongues reappear, and the marine convection shifts from the equatorial belt to the intertropical convergence zones (ITCZs) along 8 deg N. On the basis of observational evidence concerning the timing and year-to-year regularity of the surface wind changes during the development of the cold tongues, it is argued that (1) the increase in the northward surface winds in response to the onset of the northern summer monsoon may be instrumental in reestablishing the cold tongues, and (2) positive feedbacks involving both the zonal and meridional wind components contribute to the remarkable robustness of the cold tongue-ITCZs complexes in both oceans.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Climate (ISSN 0894-8755); 5; 10; p. 1140-1156.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...