ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • METEOROLOGY AND CLIMATOLOGY  (1)
  • Yield  (1)
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Plant ecology 104-105 (1993), S. 239-260 
    ISSN: 1573-5052
    Schlagwort(e): Growth ; Yield ; Photosynthesis ; Water use ; Respiration ; Acclimation
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract The continuing increase in atmospheric carbon dioxide concentration ([CO2]) and projections of possible future increases in global air temperatures have stimulated interest in the effects of these climate variables on plants and, in particular, on agriculturally important food crops. Mounting evidence from many different experiments suggests that the magnitude and even direction of crop responses to [CO2] and temperature is almost certain to be species dependent and very likely, within a species, to be cultivar dependent. Over the last decade, [CO2] and temperature experiments have been conducted on several crop species in the outdoor, naturally-sunlit, environmentally controlled, plant growth chambers by USDA-ARS and the University of Florida, at Gainesville, Florida, USA. The objectives for this paper are to summarize some of the major findings of these experiments and further to compare and contrast species responses to [CO2] and temperature for three diverse crop species: rice (Oryza sativa, L.), soybean (Glycine max, L.) and citrus (various species). Citrus had the lowest growth and photosynthetic rates but under [CO2] enrichment displayed the greatest percentage increases over ambient [CO2] control treatments. In all three species the direct effect of [CO2] enrichment was always an increase in photosynthetic rate. In soybean, photosynthetic rate depended on current [CO2] regardless of the long-term [CO2] history of the crop. In rice, photosynthetic rate measured at a common [CO2], decreased with increasing long-term [CO2] growth treatment due to a corresponding decline in RuBP carboxylase content and activity. Rice specific respiration decreased from subambient to ambient and superambient [CO2] due to a decrease in plant tissue nitrogen content and a decline in specific maintenance respiration rate. In all three species, crop water use decreased with [CO2] enrichment but increased with increases in temperature. For both rice and soybean, [CO2] enrichment increased growth and grain yield. Rice grain yields declined by roughly 10 % per each 1 °C rise in day/night temperature above 28/21 °C.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-06-28
    Beschreibung: Infrared digital data from geostationary satellites were used to demonstrate the usefulness of remotely sensed surface temperature data to delineate microscale and mesoscale climates. Nocturnal winter data (December-February) from 1976-77 to 1978-79 over Florida revealed noticeable contrasts in surface temperature patterns. Colder areas were associated with low soil moisture content in the upper layers of excessively drained and well drained sandy soils, whereas warmer areas were associated with bodies of water, wetlands, or poorly drained soils. An unexpected surface temperature pattern for one night where the north-central Florida climatic zone was colder than the north Florida climatic zone was found to be caused by differences in antecedent frontal rainfall. Differences in surface radiant energy fluxes over these two areas at 0200 EST 20 December 1977, based on average satellite-sensed surface temperatures, were compared with differences in soil heat fluxes that were computed from 1.5 m climatological temperatures and soil thermal properties by use of a simplified surface energy balance equation.
    Schlagwort(e): METEOROLOGY AND CLIMATOLOGY
    Materialart: Journal of Applied Meteorology; 21; Oct. 198
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...