ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-01-14
    Description: The Mediterranean and Black Sea operational forecasting systems are developed and continuously improved in the context of the Copernicus Marine Environment and Monitoring Service (CMEMS). The two systems operationally produce analyses and 10-days forecasts of the main physical parameters (Temperature, Salinity, Sea Level, Currents, Mixed Layer Depth) with a resolution of about 4.5km in the horizontal over 141 vertical levels in the Mediterranean Sea, and about 3km in the horizontal over 31 vertical levels in the Black Sea. The hydrodynamic numerical solutions are based on the NEMO (Nucleus for European Modelling of the Ocean) model coupled to a 3D variational data assimilation method (3DVAR) able to assimilate in-situ temperature and salinity profiles, satellite along-track sea level anomaly and sea surface temperature (in the Mediterranean Sea a nudging to satellite SST-L4 dataset is provided). The Mediterranean system is also 2-way online coupled with the WW3 (WaveWatch3) wave model to better represent the surface drag coefficient. The two systems are forced by 1/8o degree ECMWF (European Centre for Medium-range Weather Forecasts) atmospheric fields. The systems are validated in near real time and the quality of the products is monitored through regional websites (http://medfs.cmcc.it/ and http://bsfs.cmcc.it/) showing the analysis and forecast field maps at different depths (in case of 3D variables) as well as a weekly validation of model analysis compared with available observations. The focus of this work is to present the latest modelling system upgrades and the related improvements achieved by showing the model skill assessment including comparison with in-situ and satellite observational datasets.
    Description: Unpublished
    Description: San Diego, CA, USA
    Description: 4A. Oceanografia e clima
    Keywords: CMEMS ; Mediterranean Sea
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-10-13
    Description: The Mediterranean Monitoring and Forecasting Center (MED-MFC) is part of the Copernicus Marine Environment and Monitoring Service (CMEMS) and provides regular and systematic information on the time-evolving Mediterranean Sea physical (including waves) and biogeochemical state. The systems consist of 3 components: 1) Med-Physics, a numerical ocean prediction systems, based on NEMO model, that operationally produces analyses, reanalysis and short term forecasts of the main physical parameters; 2) Med-Biogeochemistry, a biogeochemical analysis, reanalysis and forecasting system based on the Biogeochemical Flux Model (BFM) which provides information on chlorophyll, phosphate, nitrate, primary productivity, oxygen, phytoplankton biomass, pH and pCO2; 3) Med-Waves based on WAM model and providing analysis, forecast and reanalysis products for waves. The systems have been recently upgraded at a resolution of 1/24 degree in the horizontal and 141 vertical levels. The Med-Physics analysis and forecasting system is composed by the hydrodynamic model NEMO 2-way coupled with the third-generation wave model WaveWatchIII and forced by ECMWF atmospheric fields. The model solutions are corrected by the 3DVAR data assimilation system (3D variational scheme adapted to the oceanic assimilation problem) with a daily assimilation cycle of sea level anomaly and vertical profiles of temperature and salinity. The model has a non-linear explicit free surface and it is forced by surface pressure, interactive heat, momentum and water fluxes at the air-sea interface. The biogeochemical analysis and forecasts are produced by means of the MedBFM v2.1 modeling system (i.e. the physical-biogeochemical OGSTM-BFM model coupled with the 3DVARBIO assimilation scheme) forced by the outputs of the Med-Physics product. Seven days of analysis/hindcast and ten days of forecast are bi-weekly produced on Wednesday and on Saturday, with the assimilation of surface chlorophyll concentration from satellite observations. In-situ data are mainly used to estimate model uncertainty at different spatial scales. The Med-Waves modelling system is based on the WAM Cycle 4.5.4 wave model code. It consists of a wave model grid covering the Mediterranean Sea at a 1/24° horizontal resolution, nested to a North Atlantic grid at a 1/6° resolution. The system is forced by ECMWF winds at 1/8°. Refraction due to surface currents is accounted by the system which assimilates altimeter along-track significant wave height observations. On a daily basis, it provides 1-day analysis and 5-day forecast hourly wave parameters. Currently, wave buoy observations of significant wave height and mean wave period along with satellite observations are used to calibrate and validate the Med-waves modelling system.
    Description: Published
    Description: Halifax, Nova Scotia, Canada
    Description: 4A. Oceanografia e clima
    Keywords: MED-MFC ; Mediterranean Monitoring and Forecasting Center
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...