ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (6)
Collection
Keywords
Years
  • 1
    Publication Date: 2019-07-19
    Description: The Mars Science Laboratory Curiosity rover landed in Gale crater in August 2012 to characterize modern and ancient surface environments. Curiosity executed a two-phase campaign to study the morphology, activity, physical properties, and chemical and mineralogical composition of the Bagnold Dune Field, an active eolian dune field on the lower slopes of Aeolis Mons (Mount Sharp). Detectable aspects of dune sand mineralogy have been examined from orbit with the visible/short-wave infrared spectrometer CRISMand the thermal-infrared spectrometers THEMIS and TES. CRISM data demonstrate variations in plagioclase, pyroxene, and olivine abundances across the dune field. Curiosity analyzed sediments from two locations in the dune field to evaluate the causes of the mineralogical differences observed from orbit. The Gobabeb sample was collected from Namib Dune, a barchanoidal dune on the upwind margin of the dune field, and the Ogunquit Beach sample was collected from the Mount Desert Island sand patch located downwind from Namib. These samples were sieved to 〈150 m and delivered to the CheMin X-ray diffraction instrument for quantitative mineralogical analysis. CRISM-derived mineralogy of the Namib Dune and Mount Desert Island and CheMin-derived mineralogy of the Gobabeb and Ogunquit Beach samples can be used in a value-added manner to interpret grain segregation at the bedform to dune-field scale and evaluate contributions from local sediment sources. Models of CRISM data demonstrate that Mount Desert Island is more enriched in olivine and less enriched in plagioclase than Namib dune, suggesting that fine-grained mafic sediments are preferentially mobilized downwind. Curiosity data indicate olivine also forms a coarse lag on the lee sides of barchanoidal dunes. Minor abundances of hematite, quartz, and anhydrite and small differences in the crystal chemistry of plagioclase and pyroxene derived from CheMin data suggest that sediments from the underlying lacustrine rocks also contribute to the Bagnold sands.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-E-DAA-TN61288 , Geological Society of America Annual Meeting; Nov 04, 2018 - Nov 07, 2018; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-20
    Description: Characterizing the structure and composition of phyllosilicates is important for interpreting the aqueous history of Mars and identifying potential habitable environments. Smectites and chlorites are the most dominant clay types on Mars, and there is evidence of the presence of smectite/chlorite intergrades. Smectite has been detected at Gale Crater, Mars, via orbital observations and in-situ measurements, in abundances up to approximately 25 weight percentage of bulk rock. John Klein (JK) and Cumberland (CB) were analyzed by the Chemistry and Mineralogy (CheMin) and Samples Analysis at Mars (SAM) evolved gas analysis experiment (EGA) instruments, onboard Mars Science Laboratory (MSL), Curiosity, to distinguish clay mineralogy. John Klein has a collapsed 2:1 smectite with a d-spacing of 10 Angstroms, whereas Cumberland smectite did not fully collapse and has a d-spacing of approximately 13.2 Angstroms. It has been suggested that partial chloritization or pillaring could be responsible for the expanded Cumberland smectite because pillaring inhibits the collapse of smectites down to 10 Angstrom, even under the desiccating conditions on the martian surface. Clay minerals have been detected in ancient fluvio-lacustrine rocks throughout Curiositys traverse and catalog the changes of the lake water chemistry and diagenetic conditions at Gale Crater, Mars. Investigating clay minerals is important for identifying them on the Martian surface, in particular as Curiosity proceeds into the upcoming Clay-bearing Unit.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-E-DAA-TN64975 , Lunar and Planetary Science Conference (LPSC 2019); 18ý22 Mar. 2019; The Woodlands, Texas; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-20
    Description: The Johnson Space Center Rocknest (JSC-RN) simulant was developed in response to a need by NASA's Advanced Exploration Systems (AES) In Situ Resource Utilization (ISRU) project for a simulant to be used in component and system testing for water extraction from Mars regolith. JSC-RN was de-signed to be chemically and mineralogically similar to material from the aeolian sand shadow named Rocknest in Gale Crater, particularly the 1-3 weight percentage water release as measured by the Sample Analysis at Mars (SAM) instrument. Rocknest material is a proxy for average martian soils, which are unconsolidated and could be easily scooped by rovers or landers in order to extract water. One way in which water can be extracted from aeolian material is through heating, where adsorbed and structural water is thermally removed from minerals. The water can then be condensed and used as drinking water or split and used as propellant for spacecraft or as a source of breathable O2. As such, it was essential that JSC-RN contained evolved gas profiles, especially low temperature water (less than 400 degrees Centigrade), that mimicked what is observed in martian soils. Because many of these ISRU tests require hundreds of kilograms of Mars soil simulant, it was essential that JSC-RN be cost-effective and based on com-ponents that could be purchased commercially (i.e., not synthesized in the lab). Here, we describe the JSC-RN martian soil simulant, which is ideal for large-scale production and use in ISRU water extraction studies.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-E-DAA-TN65163 , Lunar and Planetary Science Conference (LPSC 2019); 18ý22 Mar. 2019; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-13
    Description: The CheMin X-ray diffraction instrument on the Mars Science Laboratory rover has analyzed 18 rock and soil samples in Gale crater. Diffraction data allow for the identification of major crystalline phases based on the positions and intensities of well-defined peaks and also provides information regarding amorphous and poorly-ordered materials based on the shape and positions of broad scattering humps. The combination of diffraction data, elemental chemistry from APXS (Alpha Particle X-ray Spectrometer) and evolved gas analyses (EGA) from SAM (Sample Analysis at Mars) help constrain possible amorphous materials present in each sample (e.g., glass, opal, iron oxides, sulfates) but are model dependent. We present a novel method to characterize amorphous material in diffraction data and, through this approach, aim to characterize the phases collectively producing the amorphous profiles in CheMin diffraction data. This method may be applied to any diffraction data from samples containing X-ray amorphous materials, not just CheMin datasets, but we re-strict our discussion to Martian-relevant amorphous phases and diffraction data measured by CheMin or CheMin-like instruments.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-E-DAA-TN53573 , LPI Contrib. No. 2083 , Lunar and Planetary Science Conference; Mar 19, 2018 - Mar 23, 2018; The Woodlands, Tx; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-21
    Description: The Mars Science Laboratory Curiosity rover landed in Gale crater in August 2012 to investigate early Hesperian-aged sedimentary rocks on the lower slopes of Aeolis Mons (i.e., Mount Sharp) that show variations in phyllosilicates, hematite, and sulfates from orbital reflectance spectroscopy, suggesting changes in ancient aqueous environments. During the Eighth International Conference on Mars in July 2014, Curiosity was still traversing the Bradbury group on the plains of Gale crater (Aeolis Palus) and had only analyzed four samples in its internal laboratories. Soon after Mars 8, Curiosity began its investigation of Mount Sharp and has since driven through ~350 m of vertical stratigraphy, the majority of which is part of the Murray formation. The Murray fm is comprised primarily of laminated mudstone with occasional sandstone and heterolithic facies and represents a long-lived fluvio-lacustrine environment. Curiosity has analyzed 13 drilled rock samples from the Murray formation and 4 from the ancient eolian Stimson fm with the Chemistry and Mineralogy (CheMin) instrument. Here, we discuss the mineralogy of all fluvio-lacustrine samples analyzed to date and what these results tell us about sources of the sediments, aqueous environments, and habitability of ancient Gale crater.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-E-DAA-TN72364 , International Conference on Mars; Jul 22, 2019 - Jul 25, 2019; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Final Document is attached. Introduction: The Mars Science Laboratory Curi-osity rover landed in Gale crater in August 2012 to search for habitable enironments preserved in the rocks and sediments on the lower slopes of Aeolis Mons (i.e., Mount Sharp). Along the traverse, Curiosity encountered an active aeolian sand sheet, informally known as the Bagnold dune field. Orbital CRISM vis/near-IR data suggest that there are varying abun-dances of olivine and pyroxene across the dune field, where the barchan dunes on the edge of the dune field have stronger olivine signatures than the linear dunes.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-E-DAA-TN53588 , Lunar and Planetary Science Conference; Mar 19, 2018 - Mar 23, 2018; Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...