ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (6)
Collection
Keywords
Years
  • 1
    Publication Date: 2018-06-08
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-18
    Description: Here we report the combination of new near-ir spectra (1.45-2.48 micrometers), of Titania and Oberon obtained in September 1995 at a resolving power of approx. 800, with older near-ir observations (0.5- 1.44 micrometers), and recent UV (0.22-0.48 micrometers) observations obtained with HST. Previous interpretations suggest these surfaces are chiefly composed of water ice and varying amounts of spectrally neutral material. The new near-ir data provide the opportunity to search for absorption bands that could be attributable to surface materials other than water ice and because the combined spectra include such a broad wavelength region, to undertake improved models of water and neutral components on the surface. The calculated near-ir geometric albedos clearly exhibit three broad spectral features. Two (1.52- & 2.05 micrometer) have previously been used to demonstrate the presence of water ice on these satellites. The third (approx. 1.65 micrometer), suggests the presence of hexagonal water ice at low temperatures, and may provide a mechanism of estimating the surface temperature. There is no spectral evidence for ices of CO2, CO, NH3 or CH4. At UV wavelengths there is a broad absorption near 0.27-0.28 micrometer previously attributed to OH formed by magnetospheric-surface interactions and retained at the low surface temperatures of these satellites. Surface components used in a Hapke scattering models include values for a combination of irradiated water ice in the UV and hexagonal water ice at 100k in the near-ir (IR), amorphous carbon (AC), and tholins (T) (produced from gas and solid). Results of these models suggest the surfaces of Titania/Oberon are composed of IW (-77/52%) with AC the next most abundant component (approx. 19/52%) and finally T (approx. 4/7%).
    Keywords: Lunar and Planetary Science and Exploration
    Type: American Astronomical Society, Division of Planetary Sciences Annual Meeting; Oct 11, 1998 - Oct 16, 1998; Madison, WI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: A superior mutual event of the Kuiper Belt binary system (79360) Sila-Nunam was observed over 15.47 h on UT 7/8 February 2013 by a coordinated effort at four different telescope facilities; it started approximately 1.5 h earlier than anticipated, the duration was approximately 9.5 h (about 10% longer than predicted), and was slightly less deep than predicted. It is the first full event observed for a comparably sized binary Kuiper Belt object. We provide predictions for future events refined by this and other partial mutual event observations obtained since the mutual event season began.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN22027 , Icarus; 229; 423-427
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: A new Hubble Space Telescope observation of the 7:4 resonant transneptunian binary system (385446) Manwe has shown that, of two previously reported solutions for the orbit of its satellite Thorondor, the prograde one is correct. The orbit has a period of 110.18 +/- 0.02 days, semimajor axis of 6670 +/- 40 km, and an eccentricity of 0.563 +/- 0.007. It will be viewable edge-on from the inner Solar System during 2015- 2017, presenting opportunities to observe mutual occultation and eclipse events. However, the number of observable events will be small, owing to the long orbital period and expected small sizes of the bodies relative to their separation. This paper presents predictions for events observable from Earth-based telescopes and discusses the associated uncertainties and challenges.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN22034 , Icarus; 237; 1-8
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-14
    Description: The Little Red Spot (LRS) in Jupiter's atmosphere was investigated in unprecedented detail by the New Horizons spacecraft together with the Hubble Space Telescope (HST) and the Very Large Telescope (VLT). The LRS and the larger Great Red Spot (GRS) of Jupiter are the largest known atmospheric storms in the solar system. Originally a white oval, the LRS formed from the mergers of three smaller storms in 1998 and 2000 and became as red as the GRS between 2005 and 2006. Here we show that circulation and wind speeds in the LRS have increased substantially since the Voyager and Galileo eras when the oval was white. The maximum tangential velocity of the LRS is now 172 +/- 18 m/s, close to the highest values ever seen in the GRS, which has also evolved both in size and maximum wind speed. The cloud top altitudes of the GRS and LRS are similar, both storms extending much higher in the atmosphere than other Jovian anticyclonic systems. The similarities in wind speeds, cloud morphology, and coloring suggest a common dynamical mechanism explains the reddening of the two largest anticyclonic systems on Jupiter. These storms will not be observed again from close range until at least 2016.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-15
    Description: We have measured the spectrum of Titan near 5 micrometers and have found it to be dominated by absorption from the carbon monoxide 1-0 vibration-rotation band. The position of the band edge allows us to constrain the abundance of CO in the atmosphere and/or the location of the reflecting layer in the atmosphere. In the most likely case, 5 micrometers radiation is reflected from the surface and the mole fraction of CO in the atmosphere is qCO=10(+10/-5) ppm, significantly lower than previous estimates for tropospheric CO. The albedo of the reflecting layer is approximately 0.07(+0.02/-0.01) in the 5 micrometers continuum outside the CO band. The 5 micrometers albedo is consistent with a surface of mixed ice and silicates similar to the icy Galilean satellites. Organic solids formed in simulated Titan conditions can also produce similar albedos at 5 micrometers.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Icarus (ISSN 0019-1035); 124; 2; 625-31
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...