ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (4)
  • 1
    Publication Date: 2019-07-13
    Description: The search for life on planets outside our solar system will use spectroscopic identification of atmospheric bio-signatures. The most robust remotely-detectable potential bio-signature is considered to be the detection of oxygen (O2) or ozone (O3) simultaneous to methane (CH4) at levels indicating fluxes from the planetary surface in excess of those that could be produced abiotically. Here, we use an altitude-dependent photochemical model with the enhanced lower boundary conditions necessary to carefully explore abiotic O2 and O3 production on lifeless planets with a wide variety of volcanic gas fluxes and stellar energy distributions. On some of these worlds, we predict limited O2 and O3 build up, caused by fast chemical production of these gases. This results in detectable abiotic O3 and CH4 features in the UV-visible, but no detectable abiotic O2 features. Thus, simultaneous detection of O3 and CH4 by a UV-visible mission is not a strong bio-signature without proper contextual information. Discrimination between biological and abiotic sources of O2 and O3 is possible through analysis of the stellar and atmospheric context particularly redox state and O atom inventory of the planet in question. Specifically, understanding the spectral characteristics of the star and obtaining a broad wavelength range for planetary spectra should allow more robust identification of false positives for life. This highlights the importance of wide spectral coverage for future exoplanet characterization missions. Specifically, discrimination between true- and false-positives may require spectral observations that extend into infrared wavelengths, and provide contextual information on the planets atmospheric chemistry.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN16518 , The Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 792; 2; 90
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Characterizing the bulk atmosphere of a terrestrial planet is important for determining surface pressure and potential habitability. Molecular nitrogen (N2) constitutes the largest fraction of Earth's atmosphere and is likely to be a major constituent of many terrestrial exoplanet atmospheres. Due to its lack of significant absorption features, N2 is extremely difficult to remotely detect. However, N2 produces an N2-N2 collisional pair, (N2)2, which is spectrally active. Here we report the detection of (N2)2 in Earth's disk-integrated spectrum. By comparing spectra from NASA's EPOXI mission to synthetic spectra from the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional spectral Earth model, we find that (N2)2 absorption produces a ~35% decrease in flux at 4.15 m. Quantifying N2 could provide a means of determining bulk atmospheric composition for terrestrial exoplanets and could rule out abiotic O2 generation, which is possible in rarefied atmospheres. To explore the potential effects of (N2)2 in exoplanet spectra, we used radiative transfer models to generate synthetic emission and transit transmission spectra of self-consistent N2-CO2-H2O atmospheres, and analytic N2-H2 and N2-H2-CO2 atmospheres. We show that (N2)2 absorption in the wings of the 4.3 m CO2 band is strongly dependent on N2 partial pressures above 0.5 bar and can significantly widen this band in thick N2 atmospheres. The (N2)2 transit transmission signal is up to 10 ppm for an Earth-size planet with an N2-dominated atmosphere orbiting within the habitable zone of an M5V star and could be substantially larger for planets with significant H2 mixing ratios.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN26550 , Astrophysical Jpournal (ISSN 0004-637X) (e-ISSN 1538-4357); 810; 2; 57
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The rapid rate of discoveries of exoplanets has expanded the scope of the science possible for the remote detection of life beyond Earth. The Exoplanet Biosignatures Workshop-Without-Walls (EBWWW) held in 2016 engaged the international scientific community across diverse scientific disciplines, to assess the state of the science and technology in the search for life on exoplanets, and to identify paths for progress. The workshop activities resulted in five (5) major review papers which provide: 1) an encyclopedic review of known and proposed biosignatures and models used to ascertain them; 2) an in-depth review of O2 as a biosignature, rigorously examining the nuances of false positives and negatives for evidence of life; 3) a Bayesian framework to comprehensively organize current understanding to quantify confidence in biosignature assessments; 4) an extension of that Bayesian framework in anticipation of increasing planetary data and novel concepts of biosignatures, and 5) a review of the upcoming telescope capabilities to characterize exoplanets and their environment. Because of the immense content of these review papers, this summary provides a guide to their complementary scope and highlights salient features. Strong themes that emerged from the workshop were that biosignatures must be interpreted in the context of their environment, and that frameworks must be developed to link diverse forms of scientific understanding of that context to quantify the likelihood that a biosignature has been observed. Models are needed to explore the parameter space where measurements will be widespread but sparse in detail. Given the technological prospects for large ground-based telescopes and direct imaging from space-based observatories, the detection of atmospheric signatures of a few potentially habitable planets may come before 2030.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN56542 , Astrobiology; 18; 6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-14
    Description: The principal goal of the NASA Terrestrial Planet Finder (TPF) and European Space Agency's Darwin mission concepts is to directly detect and characterize extrasolar terrestrial (Earthsized) planets. This first generation of instruments is expected to provide disk-averaged spectra with modest spectral resolution and signal-to-noise. Here we use a spatially and spectrally resolved model of a Mars-like planet to study the detectability of a planet's surface and atmospheric properties from disk-averaged spectra. We explore the detectability as a function of spectral resolution and wavelength range, for both the proposed visible coronograph (TPFC) and mid-infrared interferometer (TPF-I/Darwin) architectures. At the core of our model is a spectrum-resolving (line-by-line) atmospheric/surface radiative transfer model. This model uses observational data as input to generate a database of spatially resolved synthetic spectra for a range of illumination conditions and viewing geometries. The model was validated against spectra recorded by the Mars Global Surveyor-Thermal Emission Spectrometer and the Mariner 9-Infrared Interferometer Spectrometer. Results presented here include disk-averaged synthetic spectra, light curves, and the spectral variability at visible and mid-infrared wavelengths for Mars as a function of viewing angle, illumination, and season. We also considered the differences in the spectral appearance of an increasingly ice-covered Mars, as a function of spectral resolution, signal-to-noise and integration time for both TPF-C and TPFI/ Darwin.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Astrobiology (ISSN 1531-1074); 5; 4; 461-82
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...