ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (2)
Collection
Keywords
Years
  • 1
    Publication Date: 2017-10-02
    Description: Viking Lander, Pathfinder, and Mars Exploration Rover missions to Mars have found abundant sulfur in surface soils and rocks, and the best indications are that magnesium sulfates are among the key hosts. At Meridiani Planum, MgSO4 salts constitute 15 to 40 wt.% of sedimentary rocks. Additional S is hosted by gypsum and jarosite. Reflectance and thermal emission spectroscopy is consistent with the presence of kieserite (MgSO4 H2O) and epsomite (MgSO4*7H2O). Theoretically, the dodecahydrate (MgSO4*12H2O) should also have precipitated. We first examine theoretically which MgSO4 minerals should have precipitated on Mars, and then how dehydration might have altered these minerals.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 13; LPI-Contrib-1234-Pt-13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-17
    Description: Gas hydrates are implicated in the geochemical evolution of both Mars and Europa [1- 3]. Most models developed for gas hydrate chemistry are based on the statistical thermodynamic model of van der Waals and Platteeuw [4] with subsequent modifications [5-8]. None of these models are, however, state-of-the-art with respect to gas hydrate/electrolyte interactions, which is particularly important for planetary applications where solution chemistry may be very different from terrestrial seawater. The objectives of this work were to add gas (carbon dioxide and methane) hydrate chemistries into an electrolyte model parameterized for low temperatures and high pressures (the FREZCHEM model) and use the model to examine controls on gas hydrate chemistries for Mars and Europa.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXV: Outer Solar System; LPI-Contrib-1197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...