ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: The Sample Analysis at Mars (SAM) instrument suite detected SO2, H2S, OCS, and CS2 from ~450 to 800degC during evolved gas analysis (EGA) of materials from the Rocknest aeolian deposit in Gale Crater, Mars. This was the first detection of evolved sulfur species from a Martian surface sample during in situ EGA. SO2 (~3-22 mol) is consistent with the thermal decomposition of Fe sulfates or Ca sulfites, or evolution/desorption from sulfur-bearing amorphous phases. Reactions between reduced sulfur phases such as sulfides and evolved O2 or H2O in the SAM oven are another candidate SO2 source. H2S (~41-109 nmol) is consistent with interactions of H2O, H2 and/or HCl with reduced sulfur phases and/or SO2 in the SAM oven. OCS (~1-5nmol) and CS2 (~0.2-1 nmol) are likely derived from reactions between carbon-bearing compounds and reduced sulfur. Sulfates and sulfites indicate some aqueous interactions, although not necessarily at the Rocknest site; Fe sulfates imply interaction with acid solutions whereas Ca sulfites can form from acidic to near-neutral solutions. Sulfides in the Rocknest materials suggest input from materials originally deposited in a reducing environment or from detrital sulfides from an igneous source. The presence of sulfides also suggests that the materials have not been extensively altered by oxidative aqueous weathering. The possibility of both reduced and oxidized sulfur compounds in the deposit indicates a nonequilibrium assemblage. Understanding the sulfur mineralogy in Rocknest materials, which exhibit chemical similarities to basaltic fines analyzed elsewhere on Mars, can provide insight in to the origin and alteration history of Martian surface materials.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN21407 , Journal of Geophysical Research: Planets (ISSN 2169-9097) (e-ISSN 2169-9100); 119; 2; 373-393
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Chemical compositions of Martian soil and rocks indicate complex mixing relationships. Mixing of rock and soil clearly takes place and explains some of the chemical variation because sulfur, chlorine, magnesium, and perhaps iron are positively correlated due to their control from a secondary 'sedimentary' mineralogy (e.g., Mg- and possibly Fe-sulfate; Fe-oxides) that is present within the soils. Certain deviations from simple soil-rock mixing are consistent with mineralogical fractionation of detrital iron and titanium oxides during sedimentary transport.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Paper-1999GL008432 , Geophysical Research Letters (ISSN 0094-8276); 27; 9; 1335-1338
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: The chemical composition of soils and rocks from the Pathfinder site and Phobos-2 orbital gamma-ray spectroscopy indicate that the Martian crust has a bulk composition equivalent to large-ion lithophile (LIL) and heat-producing element (K, Th, U) enriched basalt, with a potassium content of about 0.5%. A variety of radiogenic isotope data also suggest that separation of LIL-enriched crust and depleted mantle reservoirs took place very early in Martian history (〉4.0 Ga). Accordingly, if the enriched Martian crust is 〉30 km thick it is likely that a large fraction (up to at least 50%) of the heat-producing elements in Mars was transferred into the crust very early in the planet's history. This would greatly diminish the possibility of early widespread melting of the Martian mantle.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Paper-2001GL01343 , Geophysical Research Letters (ISSN 0094-8276); 28; 21; 4019-4022
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The purpose of this research project was to evaluate the APXS data collected on soils and rocks at the Pathfinder site in terms of sedimentary geochemistry. Below are described the major findings of this research: (1) An influential model to explain the chemical variation among Pathfinder soils and rocks is a two component mixing model where rocks of fairly uniform composition mix with soil of uniform composition; (2) The very strong positive correlation between MgO and SO, points to a control by a MgSO4 mineral however, spectroscopic data continue to suggest that Fe-sulfates, notably schwertmannite and jarosite, may be important components; (3) In an attempt to better understand the causes of complexities in mixing relationships, the possible influence of sedimentary transport has been evaluated; (4) Another aspect of this research has been to examine the possibility of sedimentary silica being a significant phase on Mars; and (5) On Earth, the geochemistry of sedimentary rocks has been used to constrain the chemical composition of the continental crust and an important part of this research was to evaluate this approach for Mars.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: Nutrition is a critical concern for extended-duration space missions (Smith and Lane, 1999). Loss of body weight is a primary consequence of altered nutrition, and is frequently observed during space flight (Smith and Lane; 1999). Other existing dietary concerns for space flight include excessive intakes of sodium and iron, and insufficient intakes of water and vitamin D (Smith and Lane, 1999). Furthermore, dependence on closed or semi-closed food systems increases the likelihood of inadequate intakes of key nutrients. This is a significant concern for extended-duration space missions. Space nutrition research often necessitates detailed recording of all food consumption. While this yields extremely accurate data, it requires considerable time and effort, and thus is not suitable for routine medical monitoring during space flight. To alleviate this problem, a food frequency questionnaire (FFQ) was designed to provide a quick and easy, yet reasonably accurate, method for crewmembers to provide dietary intake information to the ground. We report here a study which was designed to assess nutritional status before, during, and after the 60-d and 91-d chamber stays. An additional goal of the study was to validate a food frequency questionnaire designed specifically for use with space flight food systems.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-20729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...