ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Man/System Technology and Life Support  (494)
  • Lunar and Planetary Science and Exploration  (389)
  • 11
    Publication Date: 2019-07-13
    Description: An EMU water processing kit (Airlock Coolant Loop Recovery -- A/L CLR) was developed as a corrective action to Extravehicular Mobility Unit (EMU) coolant flow disruptions experienced on the International Space Station (ISS) in May of 2004 and thereafter. A conservative duty cycle and set of use parameters for A/L CLR use and component life were initially developed and implemented based on prior analysis results and analytical modeling. Several initiatives were undertaken to optimize the duty cycle and use parameters of the hardware. Examination of post-flight samples and EMU Coolant Loop hardware provided invaluable information on the performance of the A/L CLR and has allowed for an optimization of the process. The intent of this paper is to detail the evolution of the A/L CLR hardware, efforts to optimize the duty cycle and use parameters, and the final recommendations for implementation in the post-Shuttle retirement era.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-23329 , 41st International Conference on Environmental Systems (ICES); Jul 17, 2010 - Jul 21, 2010; Portland, OR
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-13
    Description: Technologies that reduce logistical needs are a key to long term space missions. Currently, trash and waste generated during a mission is carried during the entire roundtrip mission or stored inside a logistic module which is de-orbited into Earth's atmosphere for destruction. The goal of the Trash to Supply Gas (TtSG) project is to develop space technology alternatives for converting trash and other waste materials from human spaceflight into high-value products that might include propellants or power system fuels in addition to life support oxygen and water. In addition to producing a useful product from waste, TtSG will decrease the volume needed to store waste on long term space missions. This paper presents an overview of the TtSG technologies and future plans for the project.
    Keywords: Man/System Technology and Life Support
    Type: KSC-2012-242 , AIAA Space 2012 Conference and Exposition; Sep 11, 2012 - Sep 13, 2012; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-13
    Description: The International Space Station (ISS) Program requires that there always be a 45 calendar day contingency supply of breathing oxygen. In the early assembly stages, there is only one flight system, the Russian Solid Fuel Oxygen Generator (SFOG), that can meet that requirement. To better ensure the contingency oxygen supply, the Crew and Thermal Systems Division was directed to develop a flight hardware system that can meet all contingency oxygen requirements for ISS. Such a system, called the Backup Oxygen Candle System (BOCS), has been built and tested. The BOCS consists of 33 chlorate candles, a thermal containment apparatus, support equipment and packaging. The thermal containment apparatus utilizes the O2 produced by the candle as the motive stream in an ejector to passively cool the candle during operation.
    Keywords: Man/System Technology and Life Support
    Type: ES28C-233 , JSC-CN-6395 , International Conference on Envrionmental Systems (ICES); Jul 10, 2000 - Jul 13, 2000; Toulouse; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-12
    Description: This innovation is the environmental qualification of a single-crystal silicon mirror for spaceflight use. The single-crystal silicon mirror technology is a previous innovation, but until now, a mirror of this type has not been qualified for spaceflight use. The qualification steps included mounting, gravity change measurements, vibration testing, vibration- induced change measurements, thermal cycling, and testing at the cold operational temperature of 225 K. Typical mirrors used for cold applications for spaceflight instruments include aluminum, beryllium, glasses, and glass-like ceramics. These materials show less than ideal behavior after cooldown. Single-crystal silicon has been demonstrated to have the smallest change due to temperature change, but has not been spaceflight-qualified for use. The advantage of using a silicon substrate is with temperature stability, since it is formed from a stress-free single crystal. This has been shown in previous testing. Mounting and environmental qualification have not been shown until this testing.
    Keywords: Man/System Technology and Life Support
    Type: GSC-16473-1 , NASA Tech Briefs, June 2013; 20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-12
    Description: Filter disks made of glass frit have been found to be effective as means of high-throughput collection of metal oxide particles, ranging in size from a few to a few hundred nanometers, produced in gas-phase condensation reactors. In a typical application, a filter is placed downstream of the reactor and a valve is used to regulate the flow of reactor exhaust through the filter. The exhaust stream includes a carrier gas, particles, byproducts, and unreacted particle-precursor gas. The filter selectively traps the particles while allowing the carrier gas, the byproducts, and, in some cases, the unreacted precursor, to flow through unaffected. Although the pores in the filters are much larger than the particles, the particles are nevertheless trapped to a high degree: Anecdotal information from an experiment indicates that 6-nm-diameter particles of MnO2 were trapped with greater than 99-percent effectiveness by a filtering device comprising a glass-frit disk having pores 70 to 100 micrometer wide immobilized in an 8-cm-diameter glass tube equipped with a simple twist valve at its downstream end.
    Keywords: Man/System Technology and Life Support
    Type: MSC-23425 , NASA Tech Briefs, August 2005; 15
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-12
    Description: A tool has been developed for the special purpose of inserting the terminus of an optical fiber in a cable connector that conforms to NASA Specification SSQ- 21635. What prompted the development of the tool was the observation that because of some aspects of the designs of fiber-optic termini and of springs, sealing rings, and a grommet inside the shell of such a connector, there is a tendency for the grommet to become damaged and detached from the sealing rings during installation. It is necessary to ensure the integrity of the grommet for proper sealing and proper functioning of the connector. The special-purpose tool provides the needed protection for the grommet. The grommet-protection tool resembles a funnel into which an axial slit has been cut (see figure). Prior to insertion, the grommet-protection tool is rolled so that one side of the slit overlaps the other side. The rolled-up grommet-protection tool is inserted in one of the connector holes that accommodate the fiber-optic termini and is pushed in until the flange (the wider of the two conical portions) of the tool becomes seated on the connector grommet. Then a special-purpose installation tool is inserted in the flange of the grommet-protection tool and pressed in until it becomes seated in the flange. This operation expands the narrower of the two conical portions of the grommet-protection tool. The installation tool is removed and the grommet-protection tool remains expanded due to the flat surfaces on the axial slit. By use of a standard contact-insertion tool, a fiber-optic terminus is inserted, through the grommet-protection tool, into the connector cavity. By use of a pair of forceps or needle-nose pliers, the grommet-protection tool is then pulled out of the cavity. Finally, the grommet-protection tool is removed from around the installed fiber-optic cable by pulling the cable through the axial slit. Unlike in some prior procedures for installing the fiber-optic termini in the connector, the procedure that involves the use of the present grommet-protection tool does not include the use of lubricants that can contaminate the interior of the connector. The grommet-protection tool is made of a fluoropolymer, taking advantage of the flexibility of such polymers and further taking advantage of the inherent slipperiness of fluoropolymers. Although the tool is designed primarily for insertion of a fiber-optic terminus, it might also be useful for extracting a previously installed fiber-optic terminus.
    Keywords: Man/System Technology and Life Support
    Type: MSC-22951 , NASA Tech Briefs, November 2004; 26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-19
    Description: NASA's Curiosity rover has documented predominantly fluvial sedimentary rocks along its path from the landing site to the toe of the Peace Vallis alluvial fan (0.5 km to the east) and then along its 8 km traverse across Aeolis Palus to the base of Aeolis Mons (Mount Sharp). Lacustrine facies have been identified at the toe of the Peace Vallis fan and in the lowermost geological unit exposed on Aeolis Mons. These two depositional systems provide end members for martian fluvial/alluvial-lacustrine facies models. The Peace Vallis system consisted of an 80 square kilometers alluvial fan with decimeter-thick, laterally continuous fluvial sandstones with few sedimentary structures. The thin lacustrine unit associated with the fan is interpreted as deposited in a small lake associated with fan runoff. In contrast, fluvial facies exposed over most of Curiosity's traverse to Aeolis Mons consist of sandstones with common dune-scale cross stratification (including trough cross stratification), interbedded conglomerates, and rare paleochannels. Along the southwest portion of the traverse, sandstone facies include south-dipping meter-scale clinoforms that are interbedded with finer-grained mudstone facies, interpreted as lacustrine. Sedimentary structures in these deposits are consistent with deltaic deposits. Deltaic deposition is also suggested by the scale of fluvial to lacustrine facies transitions, which occur over greater than 100 m laterally and greater than 10 m vertically. The large scale of the transitions and the predicted thickness of lacustrine deposits based on orbital mapping require deposition in a substantial river-lake system over an extended interval of time. Thus, the lowermost, and oldest, sedimentary rocks in Gale Crater suggest the presence of substantial fluvial flow into a long-lived lake. In contrast, the Peace Vallis alluvial fan onlaps these older deposits and overlies a major unconformity. It is one of the youngest deposits in the crater, and requires only short-lived, transient flows.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-33088 , 2015 Joint Assembly; May 03, 2015 - May 07, 2015; Montreal, Canada; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-19
    Description: The diversity of albedos and surface colors on observed Kuiper Belt and Inner Oort Cloud objects remains to be explained in terms of competition between primordial intrinsic versus exogenic drivers of surface and near-surface evolution. Earlier models have attempted without success to attribute this diversity to the relations between surface radiolysis from cosmic ray irradiation and gardening by meteoritic impacts. A more flexible approach considers the different depth-dependent radiation profiles produced by low-energy plasma, suprathermal, and maximally penetrating charged particles of the heliospheric and local interstellar radiation environments. Generally red objects of the dynamically cold (low inclination, circular orbit) Classical Kuiper Belt might be accounted for from erosive effects of plasma ions and reddening effects of high energy cosmic ray ions, while suprathermal keV-MeV ions could alternatively produce more color neutral surfaces. The deepest layer of more pristine ice can be brought to the surface from meter to kilometer depths by larger impact events and potentially by cryovolcanic activity. The bright surfaces of some larger objects, e.g. Eris, suggest ongoing resurfacing activity. Interactions of surface irradiation, resultant chemical oxidation, and near-surface cryogenic fluid reservoirs have been proposed to account for Enceladus cryovolcanism and may have further applications to other icy irradiated bodies. The diversity of causative processes must be understood to account for observationally apparent diversities of the object surfaces.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 42nd Annual Meeting of the Division for Planetary Sciences of the American Astronomical Society; Oct 03, 2010 - Oct 08, 2010; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-19
    Description: The Johnson Space Center Water and Food Analytical Laboratory (WAFAL) performed detailed ground-based analyses of archival water samples for verification of the chemical quality of the International Space Station (ISS) potable water supplies for Expeditions 21 to 25. Over a 14-month period, the Space Shuttle visited the ISS on five occasions to complete construction and deliver supplies. The onboard supplies of potable water available for consumption by the Expeditions 21 to 25 crews consisted of Russian ground-supplied potable water, Russian potable water regenerated from humidity condensate, and US potable water recovered from urine distillate and condensate. Chemical archival water samples that were collected with U.S. hardware during Expeditions 21 to 25 were returned on Shuttle flights STS-129 (ULF3), STS-130 (20A), STS-131 (19A), STS-132 (ULF4) and STS-133 (ULF5), as well as on Soyuz flights 19-22. This paper reports the analytical results for the returned archival water samples and evaluates their compliance with ISS water quality standards. The WAFAL also received and analyzed aliquots of some Russian potable water samples collected in-flight and pre-flight samples of Rodnik potable water delivered to the Station on the Russian Progress vehicle during Expeditions 21 to 25. These additional analytical results are also reported and discussed in this paper.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-22212 , 41st International Conference on Environmental Systems; Jul 17, 2011 - Jul 21, 2011; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-E-DAA-TN63049 , LEAG 2018 Annual Meeting Survive the Night Workshop; Nov 14, 2018 - Nov 15, 2018; Columbia, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...