ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-19
    Description: Carbonaceous chondrites exhibit a wide range of aqueous and thermal alteration characteristics. Examples of the thermally metamorphosed carbonaceous chondrites (TMCCs) include the C2-ung/CM2TIVs Belgica (B)-7904 and Yamato (Y) 86720. The alteration extent is the most complete in these meteorites and thus they are considered typical end-members of TMCCs exhibiting complete dehydration of matrix phyllosilicates [1, 2]. The estimated heating conditions are 10 to 10(sup 3) days at 700 C to 1 to 100 hours at 890 C, i.e. short-term heating induced by impact and/or solar radiation [3]. The chemical and bulk oxygen isotopic compositions of the matrix of the carbonate (CO3)-poor lithology of the Tagish Lake (hereafter Tag) meteorite bears similarities to these TMCCs [4]. We investigated the experimentally-heated Tag with the use of Raman spectroscopy to understand how short-term heating affects the maturity of insoluble organic matter (IOM) in aqueously altered meteorites.
    Keywords: Lunar and Planetary Science and Exploration; Inorganic, Organic and Physical Chemistry
    Type: JSC-CN-36530 , METSOC Annual Meeting; Aug 07, 2016 - Aug 12, 2016; Berlin; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Northwest Africa (NWA) 10758 is a newly identified carbonaceous chondrite that is a Bali-like oxidized CV3. The large Ca-Al rich inclusion (CAI) in this sample is approx. 2.4 x 1.4 cm. The CAI is transitional in composition between type A and type B, with interior mineralogy dominated by melilite, plus less abundant spinel and Al-Ti rich diopside, and only very minor anorthite (Fig. 1A). This CAI is largely free of secondary alteration in the exposed section we examined, with almost no nepheline, sodalite or Ca-Fe silicates. The Wark-Lovering (WL) rim on this CAI is dominated by hibonite, with lower abundances of spinel and perovskite, and with hibonite locally overlain by melilite plus perovskite (as in Fig. 1B). Note that the example shown in 1B is exceptional. Around most of the CAI, hibonite + spinel + perovskite form the WL rim, without overlying melilite. The WL rim can be unusually thick, ranging from approx. 20 microns up to approx. 150 microns. A well-developed, stratified accretionary rim infills embayments of the CAI, and thins over protuberances in the convoluted CAI surface.
    Keywords: Lunar and Planetary Science and Exploration; Geophysics
    Type: JSC-CN-39701 , Annual Meeting of The Meteoritical Society; Jul 23, 2017 - Jul 28, 2017; Sante Fe, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: NWA 8694 is a new chassignite whose constituent minerals are more Fe-rich than those in the other known chassignites (Chassigny and NWA 2737), and may suggest a petrogenetic relationship to nakhlites. In this abstract we report mineralogy of NWA 8694 to infer its cooling rate and redox state, and discuss its thermal and shock history in comparison with other chassignites. NWA 8694 is a cumulate dunite of approximately 2 mm olivine with interstitial pyroxene and feldspar. Olivine is homogeneous (Fo(sub 55-56)), but Ca decreases at the approximately 50-100 micrometer rim (0.25-0.1 wt% CaO). Because the Ca-depleted rim is narrower than those in other chassignites (approximately 50 micrometer), NWA 8694 may have cooled slightly faster than the others (approximately 30 C/yr), but would be in the same order. Pyroxenes are low- and high-Ca pyroxenes, both exhibiting sub-micron exsolution textures (0.2-0.3 micrometer wide lamellae with the spacing of 0.8-1.8 micrometers). Although the low-Ca pyroxene host has an orthopyroxene composition (Wo approximately 2), the EBSD analysis suggests a pigeonite structure (P2(sub 1)/c), which is also reported from the Chassigny pyroxene. The size of exsolution texture is a bit smaller, but broadly similar to those in other chassignites, implying a similar fast cooling rate (35-43 C/yr). Feldspars are isotropic (plagioclase: clustered around An25Or10, K-feldspar: approximately An19Or78), suggestive of extensive shock metamorphism, consistent with undulatory extinction of olivine. Feldspar compositions are around the equilibrium isotherm of approximately 800 C. The olivine and chromite compositions give an equilibration temperature of 760-810 C and logfO2 of QFM+/-0.3. The inferred fast cooling rate and high fO2 of NWA 8694 are both similar to those of Chassigny and NWA 2737, and suggest a common formation condition (e.g., thick lava flow or shallow intrusion) under oxidizing condition. The Fe-rich mineral compositions of NWA 8694 may be due to crystallization from more fractionated melt than the other chassignites. The shock degree of NWA 8694 would be similar to Chassigny, but distinct from NWA 2737 with darkened olivine showing more extensive shock.
    Keywords: Lunar and Planetary Science and Exploration; Inorganic, Organic and Physical Chemistry
    Type: JSC-CN-35692 , Goldschmidt Conference 2016; Jun 26, 2016 - Jul 01, 2016; Yokohama; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: Amoeboid Olivine aggregates (AOAs) are irregularly shaped objects commonly observed in carbonaceous chondrites. Because they are composed of fine-grained olivine and Ca-Al-rich minerals, they are sensitive indicators for nebular process and parent body alteration of their parent bodies. Recently an AOA was found in a carbonaceous clast in polymict eucrite LEW 85300. The bulk major element composition of the clast matrix in LEW 85300 suggests a relation to CM, CO and CV chondrites, whereas bulk clast trace and major element compositions do not match any carbonaceous chondrite, suggesting they have a unique origin. Here we characterize the mineralogy of AOA in LEW 85300 and discuss the origin of the carbonaceous clasts. Results and Discussion: The AOA is located in an impact melt vein. Half of the aggregate shows recrystallization textures (euhedral pyroxene and molten metal/FeS) due to impact melting, but the remaining part preserves the original texture. The AOA is composed of olivine, FeS and Mg,Al-phyllosilicate. Individual olivine grains measure 1-8 microns, with Fe-rich rims, probably due to impact heating. Olivines in the AOA are highly forsteritic (Fo95-99), indicating that the AOA escaped thermal metamorphism [4]. Although no LIME (Low-Fe, Mn-Enriched) olivine is observed, forsterite composition and the coexistence of Mg,Al-phyllosilicate suggest that the AOA is similar to those in the Bali-type oxidized CV (CVoxB) and CR chondrites. However, it should be noted that fayalitic olivine, which commonly occurs in CVoxB AOA, is not observed in this AOA. Also, the smaller grain size (〈8 microns) of olivine suggests they may be related to CM or CO chondrites. Therefore, we cannot exclude the possibility that the AOA originated from a unique carbonaceous chondrite.
    Keywords: Lunar and Planetary Science and Exploration; Geophysics
    Type: JSC-CN-35689 , Goldschmidt Conference 2016; Jun 26, 2016 - Jul 01, 2016; Yokohama; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...