ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: The Galileo probe net flux radiometer (NFR) measured radiation fluxes in Jupiter's atmosphere from about 0.44 to 14 bars, using five spectral channels to separate solar and thermal components. Onboard calibration results confirm that the NFR responded to radiation approximately as expected. NFR channels also responded to a superimposed thermal perturbation, which can be approximately removed using blind channel measurements and physical constraints. Evidence for the expected NH3 cloud was seen in the spectral character of spin-induced modulations of the direct solar beam signals. These results are consistent with an overlying cloud of small NH3 ice particles (0.5-0.75 microns in radius) of optical depth 1.5-2 at 0.5 microns. Such a cloud would have so little effect on thermal fluxes that NFR thermal channels provide no additional constraints on its properties. However, evidence for heating near 0.45 bar in the NFR thermal channels would seem to require either an additional opacity source beyond this small-particle cloud, implying a heterogeneous cloud structure to avoid conflicts with solar modulation results, or a change in temperature lapse rate just above the probe measurements. The large thermal flux levels imply water vapor mixing ratios that are only 6% of solar at 10 bars, but possibly increasing with depth, and significantly subsaturated ammonia at pressures less than 3 bars. If deep NH3 mixing ratios at the probe entry site are 3-4 times ground-based inferences, as suggested by probe radio signal attenuation, then only half as much water is needed to match NFR observations. No evidence of a water cloud was seen near the 5-bar level. The 5-microns thermal channel detected the presumed NH4SH cloud base near 1.35 bars. Effects of this cloud were also seen in the solar channel upflux measurements but not in the solar net fluxes, implying that the cloud is a conservative scatterer of sunlight. The minor thermal signature of this cloud is compatible with particle radii near 3 gm, but it cannot rule out smaller particles. Deeper than about 3 bars, solar channels indicate unexpectedly large absorption of sunlight at wavelengths longer than 0.6 microns, which might be due to unaccounted-for absorption by NH3 between 0.65 and 1.5 microns.
    Keywords: Lunar and Planetary Exploration
    Type: Paper-98JE01048 , Journal of Geophysical Research (ISSN 0148-0227); 103; E10; 22,929-22,977
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The Galileo probe net flux radiometer (NFR) measured radiation fluxes in Jupiter's atmosphere from about 0.44 to 14 bars, using five spectral channels to separate solar and thermal components. Onboard calibration results confirm that the NFR responded to radiation approximately as expected. NFR channels also responded to a superimposed thermal perturbation, which can be approximately removed using blind channel measurements and physical constraints. Evidence for the expected NH3 cloud was seen in the spectral character of spin-induced modulations of the direct solar beam signals. These results are consistent with an overlying cloud of small NH3 ice particles (0.5-0.75 microns in radius) of optical depth 1.5-2 at 0.5 microns. Such a cloud would have so little effect on thermal fluxes that NFR thermal channels provide no additional constraints on its properties. However, evidence for heating near 0.45 bar in the NFR thermal channels would seem to require either an additional opacity source beyond this small-particle cloud, implying a heterogeneous-cloud structure to avoid conflicts with solar modulation results, or a change in temperature lapse rate just above the probe measurements. The large thermal flux levels imply water vapor mixing ratios that are only 6% of solar at 10 bars, but possibly increasing with depth, and significantly subsaturated ammonia at pressures less than 3 bars. If deep NH3 mixing ratios at the probe entry site are 3-4 times ground-based inferences, as suggested by probe radio signal attenuation, then only half as much water is needed to match NFR observations. No evidence of a water cloud was seen near the 5-bar level. The 5 microns thermal channel detected the presumed NH4SH cloud base near 1.35 bars. Effects of this cloud were also seen in the solar channel upflux measurements but not in the solar net fluxes, implying that the cloud is a conservative scatterer of sunlight. The minor thermal signature of this cloud is compatible with particle radii near 3 microns, but it cannot rule out smaller particles. Deeper than about 3 bars, solar channels indicate unexpectedly large absorption of sunlight at wavelengths longer than 0.6 microns, which might be due to unaccounted-for absorption by NH3 between 0.65 and 1.5 microns.
    Keywords: Lunar and Planetary Exploration
    Type: Paper-98JE01048 , Journal of Geophysical Research (ISSN 0148-0227); 103; E10; 22,929-22,977
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-17
    Description: The CSHELL spectrometer at NASA's Infrared Telescope Facility was used in August 1996 to observe Jupiter at 5.18 microns. This wavelength sounds the 3-8 bar region in Jupiter's deep troposphere. A 1-arcsec-wide slit was aligned east-west on Jupiter and stepped from north to south across the Great Red Spot (GRS). Within our spectral bandpass are absorption lines of NH3 and a hot band of CH4. Radiative transfer models indicate that the strength of the CH4 feature is anti-correlated with gaseous H2O between 3 and 6 bars. The CH4 feature is predicted to be very strong for H2O abundances less than 10ppm and it should vanish when H2O 〉 300ppm. The depths of the observed CH4 and NH3 absorption features varied dramatically near the GRS. The center and east side (planetocentric) of the GRS is dry in both volatiles as indicated by strong CH4 absorption and a weak NH3 line. The CH4 line vanishes and the NH3 feature grows stronger on the west side of the GRS. We interpret this as due to a real variation in both volatiles - H2O and NH3 - due to a common dynamical mechanism. Water clouds are expected to be accompanied by saturated gaseous H2O profiles between 3 and 5 bars. The Galileo imaging team (Banfield et al 1998 Icarus 135, p230) deduced the presence of a cloud near the 4-bar level northwest of the GRS. Our data indicate that this same region is volatile rich; thus the combination of the two datasets provides a compelling case for a water cloud at this location. The deep volatile abundance does not correlate with 5-micron continuum opacity near the GRS. This suggests that the spatial variation of the 5-micron flux near the GRS is due primarily to NH3 clouds, rather than H2O clouds.
    Keywords: Lunar and Planetary Exploration
    Type: Division of Planetary Sciences; Oct 10, 1999 - Oct 15, 1999; Padua; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...