ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Exploration  (14)
  • Space Sciences (General)  (2)
Collection
Years
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: Researchers have reviewed the evidence that the climate of Mars has changed throughout its history. In this paper, the discussion focuses on where we stand in terms of modeling these climate changes. For convenience, three distinct types of climate regimes are considered: very early in the planet's history (more than 3.5 Ga), when warm wet conditions are thought to have prevailed; the bulk of the planet's history (3.5-1 Ga), during which episodic ocean formation has been suggested; and relatively recently in the planet's history (less than 1 Ga), when orbitally induced climate change is thought to have occurred.
    Keywords: Lunar and Planetary Exploration
    Type: Mars 2005 Sample Return Workshop; 43-48; NASA-CR-205525
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: The purpose of this research project was to create statistical products which could of use to the engineering and scientific communities planning future missions to Mars. This has been accomplished. Using simulations of Mars' atmosphere under a variety of conditions, we have created statistical databases quantifying the behavior of Mars' atmosphere under a variety of conditions expected to be encountered on forthcoming missions. These data are now being incorporated into a new version of Mars-GRAM.
    Keywords: Lunar and Planetary Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Dr. James Murphy is a member of the Mars Pathfinder Atmospheric Structure Investigation Meteorology (ASI/MET) Science Team. The activities of Dr. Murphy, and his collaborators are summarized in this report, which reviews the activities in support of the analysis of the meteorology data from the Mars Pathfinder Lander.
    Keywords: Lunar and Planetary Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: We employed numerical modelling of the martian atmosphere, and our expertise in understanding martian atmospheric processes, to better understand the coupling between lower and upper atmosphere processes. One practical application of this work has been our involvement with the ongoing atmospheric aerobraking which the Mars Global Surveyor (MGS) spacecraft is currently undergoing at Mars. Dr. Murphy is currently a member of the Mars Global Surveyor (MGS) Aerobraking Atmospheric Advisory Group (AAG). He was asked to participate in this activity based upon his knowledge of martian atmospheric dynamical processes. Aerobraking is a process whereby a spacecraft, in an elliptical orbit, passes through the upper layers of the atmosphere (in this instance Mars). This passage through the atmosphere 'drags' upon the spacecraft, gradually reducing its orbital velocity. This has the effect, over time, of converting the elliptical orbit to a circular orbit, which is the desired mapping orbit for MGS. Carrying out aerobraking eliminates the need for carrying large amounts of fuel on the spacecraft to execute an engine burn to achieve the desired orbit. Eliminating the mass of the fuel reduces the cost of launch. Damage to one of MGS's solar panels shortly after launch has resulted in a less aggressive extended in time aerobraking phase which will not end until March, 1999. Phase 1 extended from Sept. 1997 through March 1998. During this time period, Dr. Murphy participated almost daily in the AAG meetings, and beginning in December 1997 lead the meeting several times per week. The leader of each of the daily AAG meetings took the results of that meeting current state of the atmosphere, identification of any time trends or spatial patterns in upper atmosphere densities, etc.) forward to the Aerobraking Planning Group (APG) meeting, at which time the decision was made to not chance MGS orbit, to lower the orbit to reach higher densities (greater 'drag'), or raise the orbit to avoid experiencing excessive, possibly damaging densities.
    Keywords: Lunar and Planetary Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. Using a global atmospheric circulation model for Mars, the focus of this JRI has been to provide support for the Mars Global Surveyor (MGS) spacecraft aerobraking activities and interpretation guidance of preliminary observations. The primary atmospheric model applied in this investigation has been a high-top version of the NASA Ames Mars general circulation model (MGCM). Comparisons with an atmospheric model designed primarily for engineering purposes (Mars-GRAM) has also been carried out. From a suite of MGCM simulations, we have assessed plausible spatial and temporal variability in atmospheric density at high altitudes (e.g., 70-1 10 km) for seasonal dates and locations during Phase 1 aerobraking. Diagnostic tools have been developed to analyze circulation fields from the MGCM simulations, and these tools have been applied in the creation of a Mars climate catalogue database. Throughout Phase I aerobraking activities, analysis products have been provided to the MGS aerobraking atmospheric advisory group (AAG). Analyses of circulation variability at the coupling level between the MGCM and a Mars thermospheric global circulation model (MTGCM) has also been assessed. Finally, using a quasi-geostrophic dynamical formulation with the MGCM simulations, diagnosis of breaking planetary (Rossby) waves in Mars middle atmosphere has been carried out. Titles of papers presented at scientific workshops and seminars, and a publication in the scientific literature are provided.
    Keywords: Lunar and Planetary Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: We have characterized the near-surface martian wind environment as calculated with a set of numerical simulations carried out with the NASA Ames Mars General Circulation Model (Mars GCM). These wind environments are intended to offer future spacecraft missions to the martian surface a data base from which to choose those locations which meet the mission's criteria for minimal near surface winds to enable a successful landing. We also became involved in the development and testing of the wind sensor which is currently onboard the Mars-bound Pathfinder lander. We began this effort with a comparison of Mars GCM produced winds with those measured by the Viking landers during their descent through the martian atmosphere and their surface wind measurements during the 3+ martian year lifetime of the mission. Unexpected technical difficulties in implementing the sophisticated Planetary Boundary Layer (PBL) scheme of Haberle et al. (1993) within the Mars GCM precluded our carrying out this investigation with the desired improvement to the model's treatment of the PBL. Thus, our results from this effort are not as conclusive as we had anticipated. As it turns out, similar difficulties have been experienced by other Mars modelling groups in attempting to implement very similar PBL routines into their GCMs (Mars General Circulation Model Intercomparison Workshop, held at Oxford University, United Kingdom, July 22-24, 1996; organized by J. Murphy, J. Hollingsworth, M. Joshi). These problems, which arise due to the nature of the time stepping in each of the models, are near to being resolved at the present. The model discussions which follow herein are based upon results using the existing, less sophisticated PBL routine. We fully anticipate implementing the tools we have developed in the present effort to investigate GCM results with the new PBL scheme implemented, and thereafter producing the technical document detailing results from the analysis tools developed during this effort. Producing such a document now would be premature.
    Keywords: Lunar and Planetary Exploration
    Type: NASA/CR-97-205840 , NAS 1.26:205840
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. The focus of this JRI has been to investigate the nature of intraseasonal and interannual variability of Mars'present climate. We have applied a three-dimensional climate model based on the full hydrostatic primitive equations to determine the spatial, but primarily, the temporal structures of the planet's large-scale circulation as it evolves during a given seasonal advance, and, over multi-annual cycles. The particular climate model applies simplified physical parameterizations and is computationally efficient. It could thus easily be integrated in a perpetual season or advancing season configuration, as well as over many Mars years. We have assessed both high and low-frequency components of the circulation (i.e., motions having periods of Omicron(2-10 days) or greater than Omicron(10 days), respectively). Results from this investigation have explored the basic issue whether Mars' climate system is naturally 'chaotic' associated with nonlinear interactions of the large-scale circulation-regardless of any allowance for year-to-year variations in external forcing mechanisms. Titles of papers presented at scientific conferences and a manuscript to be submitted to the scientific literature are provided. An overview of a areas for further investigation is also presented.
    Keywords: Lunar and Planetary Exploration
    Type: NASA/CR-97-205841 , NAS 1.26:205841
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-18
    Description: Jim Pollack was an extraordinary scientist. Since receiving his Ph.D. from Harvard in 1965, he published hundreds of papers in scientific journals, encyclopedias, popular magazines, and books. The sheer volume of this kind of productivity is impressive enough, but when considering the diversity and detail of his work, these accomplishments seem almost superhuman. Jim studied and wrote about every planet in the solar system. For, this he was perhaps the most distinguished planetary scientist of his generation. He successfully identified the composition of Saturn's rings and Venus's clouds. With his collaborators, he created the first detailed models for the formation of the outer planets, and the general circulation of the Martian atmosphere. His interest in Mars dust storms provided a foundation for the "nuclear winter" theory that ultimately helped shape foreign policy in the cold war era. Jim's creative talents brought him many awards including the Kuiper Award of the Division of Planetary Sciences, the Leo Szilard Award of the American Physical Society, H. Julian Allen award of the Ames Research Center, and several NASA medals for exceptional scientific achievement.
    Keywords: Space Sciences (General)
    Type: DPS Meeting; Oct 26, 1994 - Nov 01, 1994; Washington, DC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-01-03
    Description: This study retrieved estimated altitudes of Martian water-ice clouds through a comparison of observations taken by the Mars Science Laboratory (MSL, Curiosity) rover and the Mars Regional Atmospheric Modelling System (MRAMS). The vertical pointing of a Zenith Movie (ZM) allows many wind velocities and directions to be measured when clouds are observed, however without a lidar onboard the altitude of these clouds cannot be directly determined. By simulating conditions at Gale Crater with MRAMS, wind properties found in ZMs can be correlated with model outputs to estimate cloud altitudes at Gale Crater from the surface for the first time. These results are evaluated to assess any diurnal and seasonal cloud altitude patterns above Gale crater.
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN76683 , Planetary and Space Science (ISSN 0032-0633)
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Cen- ter and San Jose State University, Department of Meteorology. The focus of this JRI has been to evaluate the dynamical "cores" of two global atmospheric circulation models for Mars that are in operation at the NASA Ames Research Center. ne two global circulation models in use are fundamentally different: one uses spherical harmonics in its horizontal representation of field variables; the other uses finite differences on a uniform longitude-latitude grid. Several simulations have been conducted to assess how the dynamical processors of each of these circulation models perform using identical "simple physics" parameterizations. A variety of climate statistics (e.g., time-mean flows and eddy fields) have been compared for realistic solstitial mean basic states. Results of this research have demonstrated that the two Mars circulation models with completely different spatial representations and discretizations produce rather similar circulation statistics for first-order meteorological fields, suggestive of a tendency for convergence of numerical solutions. Second and higher-order fields can, however, vary significantly between the two models.
    Keywords: Lunar and Planetary Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...