ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Longshore currents  (1)
  • Ocean  (1)
  • Pollution  (1)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 6289–6308, doi:10.1002/2015JC010844.
    Description: Surfzone and inner-shelf tracer dispersion are observed at an approximately alongshore-uniform beach. Fluorescent Rhodamine WT dye, released near the shoreline continuously for 6.5 h, is advected alongshore by breaking-wave- and wind-driven currents, and ejected offshore from the surfzone to the inner-shelf by transient rip currents. Novel aerial-based multispectral dye concentration images and in situ measurements of dye, waves, and currents provide tracer transport and dilution observations spanning about 350 m cross-shore and 3 km alongshore. Downstream dilution of near-shoreline dye follows power law decay with exponent −0.33, implying that a tenfold increase in alongshore distance reduces the concentration about 50%. Coupled surfzone and inner-shelf dye mass balances close, and in 5 h, roughly half of the surfzone-released dye is transported offshore to the inner-shelf. Observed cross-shore transports are parameterized well ( inline image, best fit slope inline image) using a bulk exchange velocity and mean surfzone to inner-shelf dye concentration difference. The best fit cross-shore exchange velocity inline image is similar to a temperature-derived exchange velocity on another day with similar wave conditions. The inline image magnitude and observed inner-shelf dye length scales, time scales, and vertical structure indicate the dominance of transient rip currents in surfzone to inner-shelf cross-shore exchange during moderate waves at this alongshore-uniform beach.
    Description: National Science Foundation Graduate Research Fellowship Grant Number: DGE1144086, California Sea Grant Number: R/CONT-207TR
    Description: 2016-03-19
    Keywords: Surfzone ; Inner-shelf ; Tracer ; Cross-shore transport ; Mixing ; Pollution
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 110 (2005): C05019, doi:10.1029/2004JC002541.
    Description: Observations of shear waves, alongshore propagating meanders of the mean alongshore current with periods of a few minutes and alongshore wavelengths of a few hundred meters, are compared with model predictions based on numerical solutions of the nonlinear shallow water equations. The model (after Özkan-Haller and Kirby (1999)) assumes alongshore homogeneity and temporally steady wave forcing and neglects wave-current interactions, eddy mixing, and spatial variation of the (nonlinear) bottom drag coefficient. Although the shapes of observed and modeled shear wave velocity spectra differ, and root-mean-square velocity fluctuations agree only to within a factor of about 3, aspects of the cross-shore structure of the observed (∼0.5–1.0 m above the seafloor) and modeled (vertically integrated) shear waves are qualitatively similar. Within the surf zone, where the mean alongshore current (V) is strong and shear waves are energetic, observed and modeled shear wave alongshore phase speeds agree and are close to both V and C lin (the phase speed of linearly unstable modes) consistent with previous results. Farther offshore, where V is weak and observed and modeled shear wave energy levels decay rapidly, modeled and observed C diverge from C lin and are close to the weak alongshore current V. The simulations suggest that the alongshore advection of eddies shed from the strong, sheared flow closer to shore may contribute to the offshore decrease in shear wave phase speeds. Similar to the observations, the modeled cross- and alongshore shear wave velocity fluctuations have approximately equal magnitude, and the modeled vorticity changes sign across the surf zone.
    Description: This research was supported by the Office of Naval Research, the National Oceanographic Partnership Program, and the National Science Foundation.
    Keywords: Shear waves ; Longshore currents ; Surf zone
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 37 (2007): 1764-1777, doi:10.1175/jpo3098.1.
    Description: The vertical structure of the dissipation of turbulence kinetic energy was observed in the nearshore region (3.2-m mean water depth) with a tripod of three acoustic Doppler current meters off a sandy ocean beach. Surface and bottom boundary layer dissipation scaling concepts overlap in this region. No depth-limited wave breaking occurred at the tripod, but wind-induced whitecapping wave breaking did occur. Dissipation is maximum near the surface and minimum at middepth, with a secondary maximum near the bed. The observed dissipation does not follow a surfzone scaling, nor does it follow a “log layer” surface or bottom boundary layer scaling. At the upper two current meters, dissipation follows a modified deep-water breaking-wave scaling. Vertical shear in the mean currents is negligible and shear production magnitude is much less than dissipation, implying that the vertical diffusion of turbulence is important. The increased near-bed secondary dissipation maximum results from a decrease in the turbulent length scale.
    Description: Funding was provided by NSF and ONR.
    Keywords: Turbulence ; Kinetic energy ; Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...