ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2001-07-21
    Description: The promoters of cell adhesion are ligands, which are often attached to flexible tethers that bind to surface receptors on adjacent cells. Using a combination of Monte Carlo simulations, diffusion reaction theory, and direct experiments (surface force measurements) of the biotin-streptavidin system, we have quantified polymer chain dynamics and the kinetics and spatial range of tethered ligand-receptor binding. The results show that the efficiency of strong binding does not depend solely on the molecular architecture or binding energy of the receptor-ligand pair, nor on the equilibrium configuration of the polymer tether, but rather on its "rare" extended conformations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jeppesen, C -- Wong, J Y -- Kuhl, T L -- Israelachvili, J N -- Mullah, N -- Zalipsky, S -- Marques, C M -- GM-17876/GM/NIGMS NIH HHS/ -- GM-47334/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Jul 20;293(5529):465-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Materials Research Laboratory, Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11463908" target="_blank"〉PubMed〈/a〉
    Keywords: Biotin/*chemistry/metabolism ; Chemistry, Physical ; Diffusion ; Kinetics ; Ligands ; Mathematics ; Monte Carlo Method ; Physicochemical Phenomena ; Polyethylene Glycols ; Polymers/*chemistry ; Protein Conformation ; Streptavidin/*chemistry/metabolism ; Surface Properties ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1997-02-07
    Description: Many biological recognition interactions involve ligands and receptors that are tethered rather than rigidly bound on a cell surface. A surface forces apparatus was used to directly measure the force-distance interaction between a polymer-tethered ligand and its receptor. At separations near the fully extended tether length, the ligands rapidly lock onto their binding sites, pulling the ligand and receptor together. The measured interaction potential and its dynamics can be modeled with standard theories of polymer and colloidal interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wong, J Y -- Kuhl, T L -- Israelachvili, J N -- Mullah, N -- Zalipsky, S -- GM 47334/GM/NIGMS NIH HHS/ -- GM17876/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Feb 7;275(5301):820-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA. jywong@engineering.ucsb.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9012346" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry/*metabolism ; Binding Sites ; Biotin/chemistry/*metabolism ; Chemistry, Physical ; Ligands ; Lipid Bilayers ; Mathematics ; Models, Chemical ; Molecular Conformation ; Physicochemical Phenomena ; Polyethylene Glycols/chemistry/*metabolism ; Streptavidin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...