ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0730-2312
    Keywords: TGFβ ; extracellular matrix ; slot blot analysis ; DBP ; RNA ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Subcutaneous implatation of demineralized bone particles (DBP) into rats induces the formation of a bone ossicle by a tightly controlled sequence of chondro- and osteo-inductive events which are directly comparable to those which occur in normal endochondral bone development. Although the morphological and biochemical sequence associated with endochondral bone formation in this model has been well characterized, to date little information is available as to the gene regulation by which these events occur. To examine the expression of genes in this system, RNA was isolated from implants every 2 days over a time course spanning 3 to 19 days after implantation of DBP into rats. Cellular levels of mRNA transcripts of cell-growth-regulated and tissue-specific genes were examined by slot blot analysis and compared to the morphological changes occuring during formation of the ossicle. Analysis of the mRNA levels of histone H4 and c-myc, markers of proliferative activity, revealed several periods of actively proliferating cells, corresponding to (1) production of fibroprogenitor cells (day 3), (2) onset of bone formation (day 9), and (3) formation of bone marrow (day 19). The mRNA levels of collagen type II, a phenotypic marker of cartilage, peaked between days 7 and 9 post-implantation, corresponding to the appearance of chondrocytes in the implant, and rapidly declined on day 11 (to 5% of maximum value) when bone formation was observed. The peak mRNA levels of collagen type I, found in fibroblasts and osteoblasts, occurred first with the onset of bone formation (days 7-10) and again during formation of bone marrow (day 19). This study has demonstrated that the temporal patterns of mRNA expression of cartilage type II and bone type I collagens coincide with the morphological sequence in this model of endochondral bone formation. Further, the mRNA levels of transforming growth factor β1 (TGFβ) were compared to those of collagen types I and II; a direct temporal correlation of TGFβ mRNA levels with that of collagen type I was found throughout the developmental time course. This observation of a tightly coupled relationship between TGFβ and type I collagen mRNA levels is consistent with a functional role for TGFβ in extracellular matrix production during in vivo bone formation.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0730-2312
    Keywords: CAT assays ; histone gene expression ; H4 promoter activity ; proliferating osteoblasts ; transcriptional regulation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: In vivo regulation of cell cycle dependent human histone gene expression was examined in transgenic mice using a fusion construct containing 6.5 kB of a human H4 promoter linked to the chloramphenicol acetyltransferase (CAT) reporter gene. Transcriptional control of histone gene expression, as a function of proliferative activity, was determined. We established the relationship between DNA replication dependent H4 mRNA levels (Northern blot analysis) and H4 promoter activity (CAT assay) during postnatal development in a broad spectrum of tissues. In most tissues sampled in adult animals, the cellular representation of H4 gene transcripts declined in parallel with promoter activity. This result is consistent with transcriptional control of H4 gene expression at the cessation of proliferation. Interestingly, while H4 mRNA was detectable at very low levels post-proliferatively in brain, promoter activity persisted in adult brain, where most of the cells are terminally differentiated. This dissociation between histone gene promoter activity and histone mRNA accumulation points to the possibility of post-transcriptional regulation of histone gene expression in brain. Cultures of osteoblasts were prepared from calvaria of transgenic mice carrying the H4 promoter/CAT reporter construct. In contrast to the brain, in these bone-derived cells, we established by immunohistochemistry that the transition to the quiescent, differentiated state is associated with a transcriptionally mediated downregulation of histone gene expression at the single cell level.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0730-2312
    Keywords: MGP ; chondrogenesis ; osteogenesis ; gene expression ; vitamin D ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Matrix Gla protein (MGP), a vitamin K dependent protein, has recently been identified in many tissues. However, it is accumulated only in bone and cartilage suggesting that the expression of MGP may be related to the development and/or maintance of the phenotypic properties of these tissues. We systematically evaluated MGP mRNA expression as a function of bone and cartilage development and also as regulated by vitamin D during growth and cellular differentiation. Three experimental models of cartilage and bone development were employed:colon; an in vivo model for endochondral bone formation, as well as in primary cells of normal diploid rat chondrocyte and osteoblast cultures. MGP was expressed at the highest level during cartilage formation and calcification in vivo during endochondral bone formation. In chondrocyte cultures, MGP mRNA was present throughout the culture period but increased only after 3 weeks concomitantly with type I collagen mRNA. In osteoblast cultures, MGP mRNA was expressed during the proliferative period and exhibited increased expression during the period of matrix development. In contrast to osteocalcin (bone Gla protein), this increase was not dependent on mineralization but was related to the extent of differentiation associated with and potentially induced by extracellular matrix formation. During the proliferative period, type I collagen mRNA peaked and thereafter declined, while type I collagen protein steadily accumulated in the extracellular matrix. Constant MGP levels were maintained in the mineralization period of osteoblast differentiation in vitro which is consistent with the constant levels found during the osteogenic period of the in vivo system. MGP mRNA levels in both osteoblasts and chondrocytes in culture were significantly elevated by 1,25-(OH)2D3 (10-8 M, 48 h) throughout the time course of cellular growth and differentiation. Interestingly, when MGP mRNA transcripts from vitamin D treated and untreated chondrocytes and osteoblasts were analyzed by high resolution Northern blot analysis, we observed two distinct species of MGP mRNA in the vitamin D treated chondrocyte cultures while all other cultures examined exhibited only a single MGP mRNA transcript. Primer extension analysis indicated a single transcription start site in both osteoblasts and chondrocytes with or without vitamin D treatment, suggesting that the lower molecular weight MGP message in vitamin D treated chondrocytes may be related to a modification in post-transcriptional processing. In conclusion, these results show that the selective accumulation of MGP in bone and cartilage tissues in vitro may be related to the development and/or maintance of a collagenous matrix as reflected by increases in MGP mRNA during these periods. Moreover, our data suggest that cartilage and bone MGP mRNA may in part be selectively regulated by 1,25-(OH)2D3 at the post-transcriptional level.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The relationship of cell proliferation to the temporal expression of genes characterizing a developmental sequence associated with bone cell differentiation was examined in primary diploid cultures of fetal calvarial derived osteoblasts by the combined use of autoradiography, histochemistry, biochemistry, and mRNA assays of osteoblast cell growth and phenotypic genes. Modifications in gene expression define a developmental sequence that has 1) three principle periods-;proliferation, extracellular matrix maturation, and mineralization-;and 2) two restriction points to which the cells can progress but cannot pass without further signal-;the first when proliferation is down-regulated and gene expression associated with extracellular matrix maturation is induced, and the second when mineralization occurs. Initially, actively proliferating cells, expressing cell cycle-and cell growth-regulated genes, produce a fibronectin/type I collagen extracel-lular matrix. A reciprocal and functionally coupled relationship between the decline in proliferative activity and the subsequent induction of genes associated with matrix maturation and mineralization is supported by 1) a temporal sequence of events in which there is an enhanced expression of alkaline phos-phatase immediately following the proliferative period, and later, an increased expression of osteocalcin and osteopontin at the onset of mineralization; 2) increased expression of a specific subset of osteoblast phenotype markers, alkaline phosphatase and osteopontin, when proliferation is inhibited by hydroxyurea; and 3) enhanced levels of expression of the osteoblast markers as a function of ascorbic acid-induced collagen deposition, suggesting that the extracellular matrix contributes to both the shutdown of proliferation and the development of the osteoblast phenotype.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The role of the vitamin K dependent proteins, osteocalcin which is bone specific and matrix Gla protein (MGP) found in many tissues, has been studied by inhibition of synthesis of their characteristic amino acid, γ-carboxyglutamic acid (Gla) with the anticoagulant sodium warfarin. The effect of sodium warfarin on expression of these proteins, and other phenotypic markers of bone and cartilage during cellular differentiation and development of tissue extracellular matrix, was examined in several model systems. Parameters assayed include cell growth (reflected by histone gene expression) and collagen types I and II, osteopontin, alkaline phosphatase, and mineralization. Studies were carried out in calvarial bone organ cultures, normal diploid rat osteoblast and chondrocyte cultures, and rat osteosarcoma cell lines ROS 17/2.8 and 25/1. In normal diploid cells, warfarin consistently stimulated cell proliferation (twofold). In osteoblast cultures, MGP mRNA levels were generally increased (three to tenfold). Notably, MGP mRNA levels were not affected in chondrocyte cultures, either with chronic or acute warfarin treatments. Osteocalcin mRNA levels and synthesis were decreased up to 50% in ROS 17/2.8 cells and in chronically treated (1 and 5 μg/ml sodium warfarin) rat osteoblast cultures after 22 days. Early stages of osteoblast phenotype development from the proliferation period to initial tissue formation (nodules) appeared unaffected; while after day 14, further growth and mineralization of the nodule areas were significantly decreased in warfarin-treated cultures. In summary, warfarin has opposing effects on the expression of two vitamin K dependent proteins, MGP and osteocalcin, in osteoblast cultures and MGP is regulated differently between cartilage and bone as reflected by cellular mRNA levels. Additionally, warfarin effects expression of nonvitamin K dependent proteins which may reflect the influence of warfarin on endoplasmic reticulum associated enzymes. © 1994 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...