ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 51 (1993), S. 257-264 
    ISSN: 0730-2312
    Keywords: bioreactor ; chondrocyte ; chondrogenesis ; tissue engineering ; cartilage ; joint repair ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Cartilage implants for potential use in reconstructive or orthopedic surgery can be created by growing isolated cartilage cells (chondrocytes) in vitro on synthetic, biodegradable polymer scaffolds. The scaffolds provide specific three-dimensional structures which support cell proliferation and biodegrade in a controlled fashion in parallel to cellular regeneration of cartilaginous tissue. Cartilage implants based on chondrocytes and fibrous polyglycolic acid scaffolds were recently shown to closely resemble normal cartilage histologically as well as with respect to cell density and matrix composition (collagen, glycosaminoglycan) [Freed et al., J Biomed Mater Res 27:11-23, 1993a]. These findings form the basis for developing straightforward procedures to obtain implants for clinical use from small, autologous cartilage specimens without any limitations in terms of availability of donor tissue or implant dimensions.Chondrocyte growth and cartilage matrix regeneration on polymer scaffolds are interdependent and also depend on in vitro tissue culture conditions. Under static culture conditions, cell growth rates are diffusionally limited due to increasing cell mass and decreasing effective implant porosity resulting from cartilage matrix regeneration. Optimization of the in vitro culture environment is thus essential for the cultivation of large, clinically useful cartilage implants. Preliminary studies indicate that major improvements can be achieved using bioreactors that provide efficient mass transfer and controlled shear rates at the cell and implant surfaces. © 1993 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 313-327 
    ISSN: 0730-2312
    Keywords: articular cartilage repair ; tissue engineering ; collagen type II ; collagen type IX ; collagen network ; pyridinium crosslinks ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The function of articular cartilage as a weight-bearing tissue depends on the specific arrangement of collagen types II and IX into a three-dimensional organized collagen network that can balance the swelling pressure of the proteoglycan/ water gel. To determine whether cartilage engineered in vitro contains a functional collagen network, chondrocyte-polymer constructs were cultured for up to 6 weeks and analyzed with respect to the composition and ultrastructure of collagen by using biochemical and immunochemical methods and scanning electron microscopy. Total collagen content and the concentration of pyridinium crosslinks were significantly (57% and 70%, respectively) lower in tissue-engineered cartilage that in bovine calf articular cartilage. However, the fractions of collagen types II, IX, and X and the collagen network organization, density, and fibril diameter in engineered cartilage were not significantly different from those in natural articular cartilage. The implications of these findings for the field of tissue engineering are that differentiated chondrocytes are capable of forming a complex structure of collagen matrix in vitro, producing a tissue similar to natural articular cartilage on an ultrastructural scale. J. Cell. Biochem. 71:313-327, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0730-2312
    Keywords: wound healing ; metalloproteinase ; metalloproteinase inhibitor ; connective tissue remodeling ; chronic wounds ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The restoration of functional connective tissue is a major goal of the wound healing process. This regenerative event requires the deposition and accumulation of collagenous and noncollagenous matrix molecules as well as the remodelling of extracellular matrix (ECM) by matrix metalloproteinases (MMPs). In this study, we have utilized substrate gel electrophoresis, radiometric enzyme assays, and Western blot analyses to determine the temporal pattern of appearance and activity of active and latent MMPs and their inhibitors during the entire healing process in a partial thickness wound model. Through the use of substrate gel electrophoresis, we studied the appearance of proteolytic bands whose molecular weight was consistent with their being members of the MMP family of enzymes. Proteolytic bands whose molecular weight is consistent with both the active and latent forms of MMP-2 (72 kDa, Type IV gelatinase) were detected in wound fluid of days 1-7 after wounding. The number of active MMP-2 species detectable in wound fluid was greatest during days 4-6 after wounding. The most prominent proteolytic band detected each day migrated with a molecular weight consistent with it being the latent form of MMP-9 (92 kDa, Type V pro-collagenase). In contrast to MMP-2, the active form of this enzyme was never detected. The presence of MMP-1 (interstitial collagenase) was detected by immunoblot in the wound fluid from days 1-6 post-injury. Using a radiometric enzyme assay for collagenase inhibitory activity we have also determined the time course of activity of endogenous matrix metalloproteinase inhibitors. We have correlated these data to the known cellular events occurring in the wound during this time period as well. This study establishes a prototypical pattern of MMP appearance in normal wound healing. It may also provide potential intervention sites for the therapeutic use of inhibitors of aberrant MMP activities which characterize chronic wounds. © 1996 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...