ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: The effective growth and development of vascular plants rely on the adequate availability of water and nutrients. Inefficiency in either the initial absorption, transportation, or distribution of these elements are factors which impinge on plant structure and metabolic integrity. The potential effect of space flight and microgravity conditions on the efficiency of these processes is unclear. Limitations in the available quantity of space-grown plant material and the sensitivity of routine analytical techniques have made an evaluation of these processes impractical. However, the recent introduction of new plant cultivating methodologies supporting the application of radionuclide elements and subsequent autoradiography techniques provides a highly sensitive investigative approach amenable to space flight studies. Experiments involving the use of gel based 'nutrient packs' and the radionuclides calcium-45 and iron-59 were conducted on the Shuttle mission STS-94. Uptake rates of the radionuclides between ground and flight plant material appeared comparable.
    Keywords: Life Sciences (General)
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); Volume 26; 2; 299-302
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-18
    Description: The effective growth and development of vascular plants rely on the adequate availability of water and nutrients. Inefficiency in either the initial absorption, transportation, or distribution of these elements are factors which may impinge on plant structure and metabolic integrity. The potential effect of space flight and microgravity conditions on the efficiency of these processes is unclear. Limitations in the available quantity of space-grown plant material and the sensitivity of routine analytical techniques have made an evaluation of these processes impractical. However, the recent introduction of new plant cultivating methodologies supporting the application of radionuclide elements and subsequent autoradiography techniques provides a highly sensitive investigative approach amenable to space flight studies. Experiments involving the use of gel based 'nutrient packs' and the nuclides Ca45 and Fe59 were conducted on the Shuttle mission STS-94. Uptake rates of the radionuclides between ground and flight plant material appeared comparable.
    Keywords: Life Sciences (General)
    Type: 32nd COSPAR Scientific Assembly; Jul 12, 1998 - Jul 19, 1998; Nagoya; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-18
    Description: PGBA, a plant growth facility developed for commercial space biotechnology research, successfully grew a total of 30 plants (6 species) for 10 days on board the Space Shuttle Endeavour (STS-77) and is scheduled for reflight on board MSL-1 (STS-83) for a 16 day flight. The PGBA life support systems provide atmospheric, thermal, and humidity control as well as lighting and nutrient supply in a 23.6 liter chamber. Atmosphere treatment includes ethylene and other hydrocarbon removal, CO2 replenishment, and O2 control. The normally closed system uses controlled CO2 replenishment from the crew cabin as required by the plants. Temperature is controlled (1 C) at user-specified setpoints between 20-32 C, using water-filled coolant loops, solid state Peltier thermoelectric devices, and liquid heat exchangers. The thermoelectric cooling systems were optimized for low power consumption and high cooling efficiencies. Relative humidity is maintained between 60-100% using a cooled porous metal plate to remove water vapor from the air stream without cooling the bulk air below the dew point. The lighting system utilizes three compact fluorescent bi-axial lights with variable lighting control and light intensity (PAR) between 220 and 330 micromol/sq m/s at a distance of 20 cm in spaceflight configuration (on orbit power limited to 230 Watt for entire payload). A ground, up to 550 micromol/sq m/s light intensity can be achieved with 330 Watt payload power consumption. Plant water and nutrient support is sustained via the 'Nutrient Pack' system including the passive or active 'Water Replenishable Nutrient Pack.' The root matrix material (soil or Agar) and nutrient formulation of each pack is prepared according to plant species and experimental requirements. These systems were designed by NASA Ames personnel. Data acquisition and control systems provide 32 channels of environmental data as well as digitized or analog video signals for downlink.
    Keywords: Life Sciences (General)
    Type: International Conference on Environmental Systems; Jul 14, 1997 - Jul 17, 1997; Lake Tahoe, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-17
    Description: In traditional applications in soil physics it is convention to scale porous media properties, such as hydraulic conductivity, soil water diffusivity, and capillary head, with the gravitational acceleration. In addition, the Richards equation for water flux in partially saturated porous media also contains a gravity term. With the plans to develop plant habitats in space, such as in the International Space Station, it becomes necessary to evaluate these properties and this equation under conditions of microgravitational acceleration. This article develops models for microgravity steady state two-phase flow, as found in irrigation systems, that addresses critical design issues. Conventional dimensionless groups in two-phase mathematical models are scaled with gravity, which must be assigned a value of zero for microgravity modeling. The use of these conventional solutions in microgravity, therefore, is not possible. This article therefore introduces new dimensionless groups for two-phase models. The microgravity models introduced here determined that in addition to porous media properties, important design factors for microgravity systems include applied water potential and the ratio of inner to outer radii for cylindrical and spherical porous media systems.
    Keywords: Life Sciences (General)
    Type: Water resources research (ISSN 0043-1397); 37; 5; 1231-43
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...