ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-11-16
    Description: The paper describes a non-invasive method to measure the time an individual particle takes to move through a length of stainless steel pipe. The food product is in two phase flow (liquids and solids) and passes through a pipe with pressures of approximately 60 psig and temperatures of 270-285 F. The proposed problem solution is based on the detection of transitory amplitude and/or phase changes in a microwave transmission path caused by the passage of the particles of interest. The particles are enhanced in some way, as will be discussed later, such that they will provide transitory changes that are distinctive enough not to be mistaken for normal variations in the received signal (caused by the non-homogeneous nature of the medium). Two detectors (transmission paths across the pipe) will be required and place at a known separation. A minimum transit time calculation is made from which the maximum velocity can be determined. This provides the minimum residence time. Also average velocity and statistical variations can be computed so that the amount of 'over-cooking' can be determined.
    Keywords: Life Sciences (General)
    Type: Dual-Use Space Technology Transfer Conference and Exhibition; Volume 1; 7-14; NASA-CP-3263-Vol-1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...