ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Life Sciences (General)  (4)
Collection
Keywords
Years
  • 1
    Publication Date: 2011-08-24
    Description: Perceived stereomotion trajectory was measured before and after adaptation to lateral motion in the dominant or nondominant eye to assess the relative contributions of 2 cues: changing disparity and interocular velocity difference. Perceived speed for monocular lateral motion and perceived binocular visual direction (BVD) was also assessed. Unlike stereomotion trajectory perception, the BVD of static targets showed an ocular dominance bias, even without adaptation. Adaptation caused equivalent biases in perceived trajectory and monocular motion speed, without significantly affecting perceived BVD. Predictions from monocular motion data closely match trajectory perception data, unlike those from BVD sources. The results suggest that the interocular velocity differences make a significant contribution to stereomotion trajectory perception.
    Keywords: Life Sciences (General)
    Type: Journal of experimental psychology. Human perception and performance (ISSN 0096-1523); Volume 28; 6; 1470-82
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: It has long been known that ocular pursuit of a moving target has a major influence on its perceived speed (Aubert, 1886; Fleischl, 1882). However, little is known about the effect of smooth pursuit on the perception of target direction. Here we compare the precision of human visual-direction judgments under two oculomotor conditions (pursuit vs. fixation). We also examine the impact of stimulus duration (200 ms vs. ~800 ms) and absolute direction (cardinal vs. oblique). Our main finding is that direction discrimination thresholds in the fixation and pursuit conditions are indistinguishable. Furthermore, the two oculomotor conditions showed oblique effects of similar magnitudes. These data suggest that the neural direction signals supporting perception are the same with or without pursuit, despite remarkably different retinal stimulation. During fixation, the stimulus information is restricted to large, purely peripheral retinal motion, while during steady-state pursuit, the stimulus information consists of small, unreliable foveal retinal motion and a large efference-copy signal. A parsimonious explanation of our findings is that the signal limiting the precision of direction judgments is a neural estimate of target motion in head-centered (or world-centered) coordinates (i.e., a combined retinal and eye motion signal) as found in the medial superior temporal area (MST), and not simply an estimate of retinal motion as found in the middle temporal area (MT).
    Keywords: Life Sciences (General)
    Type: Journal of vision (Charlottesville, Va.); Volume 3; 11; 831-40
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: The role of two binocular cues to motion in depth-changing disparity (CD) and interocular velocity difference (IOVD)- was investigated by measuring stereomotion speed discrimination and static disparity discrimination performance (stereoacuity). Speed discrimination thresholds were assessed both for random dot stereograms (RDS), and for their temporally uncorrelated equivalents, dynamic random dot stereograms (DRDS), at relative disparity pedestals of -19, 0, and +19 arcmin. While RDS stimuli contain both CD and IOVD cues, DRDS stimuli carry only CD information. On average, thresholds were a factor of 1.7 higher for DRDS than for RDS stimuli with no clear effect of relative disparity pedestal. Results were similar for approaching and receding targets. Variations in stimulus duration had no significant effect on thresholds, and there was no observed correlation between stimulus displacement and perceived speed, confirming that subjects responded to stimulus speed in each condition. Stereoacuity was equally good for our RDS and DRDS stimuli, showing that the difference in stereomotion speed discrimination performance for these stimuli was not due to any difference in the precision of the disparity cue. In addition, when we altered stereomotion stimulus trajectory by independently manipulating the speeds and directions of its monocular half-images, perceived stereomotion speed remained accurate. This finding is inconsistent with response strategies based on properties of either monocular half-image motion, or any ad hoc combination of the monocular speeds. We conclude that although subjects are able to discriminate stereomotion speed reliably on the basis of CD information alone, IOVD provides a precise additional cue to stereomotion speed perception.
    Keywords: Life Sciences (General)
    Type: Journal of vision (Charlottesville, Va.); Volume 4; 12; 1061-79
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: Two experiments are presented assessing the contributions of the rate of change of disparity (CD) and interocular velocity difference (IOVD) cues to stereomotion speed perception. Using a two-interval forced-choice paradigm, the perceived speed of directly approaching and receding stereomotion and of monocular lateral motion in random dot stereogram (RDS) targets was measured. Prior adaptation using dysjunctively moving random dot stimuli induced a velocity aftereffect (VAE). The degree of interocular correlation in the adapting images was manipulated to assess the effectiveness of each cue. While correlated adaptation involved a conventional RDS stimulus, containing both IOVD and CD cues, uncorrelated adaptation featured an independent dot array in each monocular half-image, and hence lacked a coherent disparity signal. Adaptation produced a larger VAE for stereomotion than for monocular lateral motion, implying effects at neural sites beyond that of binocular combination. For motion passing through the horopter, correlated and uncorrelated adaptation stimuli produced equivalent stereomotion VAEs. The possibility that these results were due to the adaptation of a CD mechanism through random matches in the uncorrelated stimulus was discounted in a control experiment. Here both simultaneous and sequential adaptation of left and right eyes produced similar stereomotion VAEs. Motion at uncrossed disparities was also affected by both correlated and uncorrelated adaptation stimuli, but showed a significantly greater VAE in response to the former. These results show that (1) there are two separate, specialised mechanisms for encoding stereomotion: one through IOVD, the other through CD; (2) the IOVD cue dominates the perception of stereomotion speed for stimuli passing through the horopter; and (3) at a disparity pedestal both the IOVD and the CD cues have a significant influence.
    Keywords: Life Sciences (General)
    Type: Journal of vision (Charlottesville, Va.); Volume 2; 3; 218-31
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...