ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: Loblolly pine (Pinus taeda L.) cell suspension cultures secrete monolignols when placed in 8% sucrose/20 mM KI solution, and these were used to identify phenylpropanoid pathway flux-modulating steps. When cells were provided with increasing amounts of either phenylalanine (Phe) or cinnamic acid, cellular concentrations of immediate downstream products (cinnamic and p-coumaric acids, respectively) increased, whereas caffeic and ferulic acid pool sizes were essentially unaffected. Increasing Phe concentrations resulted in increased amounts of p-coumaryl alcohol relative to coniferyl alcohol. However, exogenously supplied cinnamic, p-coumaric, caffeic, and ferulic acids resulted only in increases in their intercellular concentrations, but not that of downstream cinnamyl aldehydes and monolignols. Supplying p-coumaryl and coniferyl aldehydes up to 40, 000-320,000-fold above the detection limits resulted in rapid, quantitative conversion into the monolignols. Only at nonphysiological concentrations was transient accumulation of intracellular aldehydes observed. These results indicate that cinnamic and p-coumaric acid hydroxylations assume important regulatory positions in phenylpropanoid metabolism, whereas cinnamyl aldehyde reduction does not serve as a control point. Copyright 1999 Academic Press.
    Keywords: Life Sciences (General)
    Type: Biochemical and biophysical research communications (ISSN 0006-291X); Volume 261; 3; 652-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: Investigative procedures were approved by Henry Ford Human Investigation Committee and NASA Johnson Space Center Committee for Protection of Human Subjects. Informed consent was obtained. Authors evaluated ability of nonphysician crewmember to obtain diagnostic-quality musculoskeletal ultrasonographic (US) data of the shoulder by following a just-in-time training algorithm and using real-time remote guidance aboard the International Space Station (ISS). ISS Expedition-9 crewmembers attended a 2.5-hour didactic and hands-on US training session 4 months before launch. Aboard the ISS, they completed a 1-hour computer-based Onboard Proficiency Enhancement program 7 days before examination. Crewmembers did not receive specific training in shoulder anatomy or shoulder US techniques. Evaluation of astronaut shoulder integrity was done by using a Human Research Facility US system. Crew used special positioning techniques for subject and operator to facilitate US in microgravity environment. Common anatomic reference points aided initial probe placement. Real-time US video of shoulder was transmitted to remote experienced sonologists in Telescience Center at Johnson Space Center. Probe manipulation and equipment adjustments were guided with verbal commands from remote sonologists to astronaut operators to complete rotator cuff evaluation. Comprehensive US of crewmember's shoulder included transverse and longitudinal images of biceps and supraspinatus tendons and articular cartilage surface. Total examination time required to guide astronaut operator to acquire necessary images was approximately 15 minutes. Multiple arm and probe positions were used to acquire dynamic video images that were of excellent quality to allow evaluation of shoulder integrity. Postsession download and analysis of high-fidelity US images collected onboard demonstrated additional anatomic detail that could be used to exclude subtle injury. Musculoskeletal US can be performed in space by minimally trained operators by using remote guidance. This technique can be used to evaluate shoulder integrity in symptomatic crewmembers after strenuous extravehicular activities or to monitor microgravity-associated changes in musculoskeletal anatomy. Just-in-time training, combined with remote experienced physician guidance, may provide a useful approach to complex medical tasks performed by nonexperienced personnel in a variety of remote settings, including current and future space programs. (c) RSNA, 2004.
    Keywords: Life Sciences (General)
    Type: Radiology (ISSN 0033-8419); Volume 234; 2; 319-22
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Life Sciences (General)
    Type: Pharmaceutical research (ISSN 0724-8741); Volume 10; 2; 313-6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: Chick precardiac tissue explants were cultured on the 8-day mission of STS-60, space shuttle Discovery. Development of in vitro cultures of precardiac chick tissue from embryo stages 5 though 8 (H-H) were initiated during orbit and were terminated after approximately fifteen hours of 37 degree C culture. Transmission electron microscopy and tritiated thymidine studies were performed postflight. No significant differences in cell proliferation were observed between flight and ground controls. Electron-microscopic studies revealed stage 8 explants were capable of differentiation during flight in a pattern which matched ground control tissues. As anticipated, stage 7 explant tissues had differentiated to a lesser extent compared to stage 8 tissues. Interestingly, stage 7 precardiac explant flight tissue differentiation was less than ground control tissue. This difference in differentiation between flight and ground cultures was enhanced in stage 6 tissues, as high levels of myofibril organization were only seen in ground controls. Other cellular components such as Golgi apparatus, junctional complexes, and mitochondria were present and appeared normal and healthy.
    Keywords: Life Sciences (General)
    Type: Acta anatomica (ISSN 0001-5180); Volume 154; 3; 169-80
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: Rapid long-distance signaling in plants can occur via several mechanisms, including symplastic electric coupling and pressure waves. We show here in variegated Coleus leaves a rapid propagation of electrical signals that appears to be caused by changes in intra-leaf CO2 concentrations. Green leaf cells, when illuminated, undergo a rapid depolarization of their membrane potential (Vm) and an increase in their apoplastic pH (pHa) by a process that requires photosynthesis. This is followed by a slower hyperpolarization of Vm and apoplastic acidification, which do not require photosynthesis. White (chlorophyll-lacking) leaf cells, when in isolated white leaf segments, show only the slow response, but when in mixed (i.e. green and white) segments, the rapid Vm depolarization and increase in pHa propagate over more than 10 mm from the green to the white cells. Similarly, these responses propagate 12-20 mm from illuminated to unilluminated green cells. The fact that the propagation of these responses is eliminated when the leaf air spaces are infiltrated with solution indicates that the signal moves in the apoplast rather than the symplast. A depolarization of the mesophyll cells is induced in the dark by a decrease in apoplastic CO2 but not by an increase in pHa. These results support the hypothesis that the propagating signal for the depolarization of the white mesophyll cells is a photosynthetically induced decrease in the CO2 level of the air spaces throughout the leaf.
    Keywords: Life Sciences (General)
    Type: Planta (ISSN 0032-0935); Volume 213; 3; 342-51
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-24
    Description: The primary metabolic fate of phyenylalanine, following its deamination in plants, is conscription of its carbon skeleton for lignin, suberin, flavonoid, and related metabolite formation. Since this accounts for approximately 30-40% of all organic carbon, an effective means of recycling the liberated ammonium ion must be operative. In order to establish how this occurs, the uptake and metabolism of various 15N-labeled precursors (15N-Phe, 15NH4Cl, 15N-Gln, and 15N-Glu) in lignifying Pinus taeda cell cultures was investigated, using a combination of high performance liquid chromatography, 15N NMR, and gas chromatograph-mass spectrometry analyses. It was found that the ammonium ion released during active phenylpropanoid metabolism was not made available for general amino acid/protein synthesis. Rather it was rapidly recycled back to regenerate phenylalanine, thereby providing an effective means of maintaining active phenylpropanoid metabolism with no additional nitrogen requirement. These results strongly suggest that, in lignifying cells, ammonium ion reassimilation is tightly compartmentalized.
    Keywords: Life Sciences (General)
    Type: The Journal of biological chemistry (ISSN 0021-9258); Volume 271; 21; 12350-5
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-24
    Description: Microfluidics, or lab-on-a-chip technology, is proving to be a powerful, rapid, and efficient approach to a wide variety of bioanalytical and microscale biopreparative needs. The low materials consumption, combined with the potential for packing a large number of experiments in a few cubic centimeters, makes it an attractive technique for both initial screening and subsequent optimization of macromolecular crystallization conditions. Screening operations, which require a macromolecule solution with a standard set of premixed solutions, are relatively straightforward and have been successfully demonstrated in a microfluidics platform. Optimization methods, in which crystallization solutions are independently formulated from a range of stock solutions, are considerably more complex and have yet to be demonstrated. To be competitive with either approach, a microfluidics system must offer ease of operation, be able to maintain a sealed environment over several weeks to months, and give ready access for the observation and harvesting of crystals as they are grown.
    Keywords: Life Sciences (General)
    Type: Journal of structural biology (ISSN 1047-8477); Volume 142; 1; 180-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-24
    Description: Cell expansion in dicotyledonous leaves is strongly stimulated by bright white light (WL), at least in part as a result of light-induced acidification of the cell walls. It has been proposed that photosynthetic reactions are required for light-stimulated transport processes across plasma membranes of leaf cells, including proton excretion. The involvement of photosynthesis in growth and wall acidification of primary leaves of bean has been tested by inhibiting photosynthesis in two ways: by reducing chlorophyll content of intact plants with tentoxin (TX) and by treating leaf discs with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Exposure to bright WL stimulated growth of intact leaves of TX-treated plants. Discs excised from green as well as from TX-or DCMU-treated leaves also responded by growing faster in WL, as long as exogenous sucrose was supplied to the photosynthetically inhibited tissues. The WL caused acidification of the epidermal surface of intact TX-leaves, but acidification of the incubation medium by mesophyll cells only occurred when photosynthesis was not inhibited. It is concluded that light-stimulated cell enlargement of bean leaves, and the necessary acidification of epidermal cell walls, are mediated by a pigment other than chlorophyll. Light-induced proton excretion by mesophyll cells, on the other hand, may require both a photosynthetic product (or exogenous sugars) and a non-photosynthetic light effect.
    Keywords: Life Sciences (General)
    Type: Planta (ISSN 0032-0935); Volume 182; 1; 72-6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-24
    Description: The quantity and quality of light required for light-stimulated cell expansion in leaves of Phaseolus vulgaris L. have been determined. Seedlings were grown in dim red light (RL; 4 micromoles photons m-2 s-1) until cell division in the primary leaves was completed, then excised discs were incubated in 10 mM sucrose plus 10 mM KCl in a variety of light treatments. The growth response of discs exposed to continuous white light (WL) for 16 h was saturated at 100 micromoles m-2 s-1, and did not show reciprocity. Extensive, but not continuous, illumination was needed for maximal growth. The wavelength dependence of disc expansion was determined from fluence-response curves obtained from 380 to 730 nm provided by the Okazaki Large Spectrograph. Blue (BL; 460 nm) and red light (RL; 660 nm) were most effective in promoting leaf cell growth, both in photosynthetically active and inhibited leaf discs. Far-red light (FR; 730 nm) reduced the effectiveness of RL, but not BL, indicating that phytochrome and a separate blue-light receptor mediate expansion of leaf cells.
    Keywords: Life Sciences (General)
    Type: Planta (ISSN 0032-0935); Volume 182; 1; 77-80
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-24
    Description: Since the 1980s hundreds of macromolecular crystal growth experiments have been performed in the reduced acceleration environment of an orbiting spacecraft. Significant enhancements in structural knowledge have resulted from X-ray diffraction of the crystals grown. Similarly, many samples have shown no improvement or degradation in comparison to those grown on the ground. A complex series of interrelated factors affect these experiments and by building a comprehensive archive of the results it was aimed to identify factors that result in success and those that result in failure. Specifically, it was found that dedicated microgravity missions increase the chance of success when compared with those where crystallization took place as a parasitic aspect of the mission. It was also found that the chance of success could not be predicted based on any discernible property of the macromolecule available to us.
    Keywords: Life Sciences (General)
    Type: Acta crystallographica. Section D, Biological crystallography (ISSN 0907-4449); Volume 61; Pt 6; 763-71
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...