ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0983
    Keywords: ABC superfamily ; Multidrug resistance ; Saccharomyces cerevisiae ; YDR1 gene
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A multidrug resistance gene, YDR1, of Saccharomyces cerevisiae, which encodes a 170-kDa protein of a member of the ABC superfamily, was identified. Disruption of YDR1 resulted in hypersensitivity to cycloheximide, cerulenin, compactin, staurosporine and fluphenazine, indicating that YDR1 is an important determinant of cross resistance to apparently-unrelated drugs. The Ydr1 protein bears the highest similarity to the S. cerevisiae Snq2 protein required for resistance to the mutagen 4-NQO. The drug-specificity analysis of YDR1 and SNQ2 by gene disruption, and its phenotypic suppression by the overexpressed genes, revealed overlapping, yet distinct, specificities. YDR1 was responsible for cycloheximide, cerulenin and compactin resistance, whereas, SNQ2 was responsible for 4-NQO resistance. The two genes had overlapping specificities toward staurosporine and fluphenazine. The transcription of YDR1 and SNQ2 was induced by various drugs, both relevant and irrelevant to the resistance caused by the gene, suggesting that drug specificity can be mainly attributed to the functional difference of the putative transporters. The transcription of these genes was also increased by heat shock. The yeast drug-resistance system provides a novel model for mammalian multidrug resistance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0983
    Keywords: Heat-shock response ; Multidrug resistance ; AP-1 homolog ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have examined whether the stress-induced transcriptional activation ofYDR1/PDR5/STS1 is mediated by yAP-1 and yAP-2. Of the stresses examined, heat shock-induced, rapid and transient PDR5 expression became very low in ayap1 yap2 double-gene disruptant, indicating that the yAP proteins mediate the response. Similar results were obtained withSNQ2, a close homologue ofPDR5. A set of 5′-truncation derivatives of thePDR5 gene identified the region from −484 to −434 as being sufficient for the response. A sequence similar to the yAP-1 recognition element recently identified in the stress-responsive yeast genes was found in this region and in the 5′-flanking sequences ofSNQ2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; Calmodulin-binding protein ; Protein phosphatase (2B type) ; Calcineurin A
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Saccharomyces cerevisiae genomic clones that encode calmodulin-binding proteins were isolated by screening a λgt11 expression library using125I-labeled calmodulin as probe. Among the cloned yeast genes, we found two closely related genes (CMP1 andCMP2) that encode proteins homologous to the catalytic subunit of phosphoprotein phosphatase. The presumed CMP1 protein (62999 Da) and CMP2 protein (68496 Da) contain a 23 amino acid sequence very similar to those identified as calmodulin-binding sites in many calmodulin-regulated proteins. The yeast genes encode proteins especially homologous to the catalytic subunit of mammalian phosphoprotein phosphatase type 213 (calcineurin). The products of theCMP1 andCMP2 genes were identified by immunoblot analysis of cell extracts as proteins of 62000 and 64000 Da, respectively. Gene disruption experiments demonstrated that elimination of either or both of these genes had no effect on cell viability, indicating that these genes are not essential for normal cell growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; Transcriptional activator ; AP-1 ; Stress response
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The Saccharomyces cerevisiae YAP2 gene encoding an AP-1-like transcriptional activator protein was cloned by selection for genes that confer pleiotropic drug resistance when present in high copy number. The novel YAP2 gene encodes a protein of 45827 daltons and is homologous in part to a known transcriptional activator protein encoded by YAP1/PDR4/SNQ3/PAR1. Homology was found only in both terminal regions. The N-terminal portion contains a region rich in basic amino acids, followed by a “leucine zipper” motif. Overexpression of YAP2 led to the induction of expression of an AP-1 recognition element (ARE)-dependent promoter. The yap1 disruptant has been shown to be sensitive to H2O2. In this study, we demonstrated that the yap1 disruptant is also unable to grow in medium containing 150 μM cadmium, whereas the yap2 disruptant exhibited no significant phenotypes. However, YAP2 in high copy number did suppress cadmium sensitivity, but not H2O2 sensitivity of the yap1 disruptant. YAP1 was able to mediate both cadmium- and H2O2-induced transcriptional activation of an ARE-dependent promoter. A high-copy-number plasmid bearing YAP2 mediated cadmium-induced transcriptional activation of this promoter. The inductions were prevented by the antioxidant N-acetyl-l-cysteine.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Supramolecular Structure 8 (1978), S. 303-310 
    ISSN: 0091-7419
    Keywords: membrane permeability ; cross-lining reagents ; erythrocyte membrane ; tartryldi(glycylazide) ; dimethyl-3,3′-dithiobispropionimidate ; Life Sciences ; Molecular Cell Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The membrane permeability of a series of reversible cross-linking reagents which are diazide tartarate derivatives has been compared with that of dimethyl-3,3′-dithiobispropionimidate (DTBP). The diazide tartarate derivatives tested include tartryl-diazide (TDA), tartryl-di(glycylazide) (TDGA), tartryl-di(β-alanylazide) (TDAA), tartryl-di-(γ-aminobutyrylazide) (TDBA), tartryl-di (∊-aminocaproylazide) (TDCA). TDA, which has the shortest chain length of the diazide tartarate derivatives tested, proved to be readily permeable through the erythrocyte membrane. When added at equal concentration to unsealed ghosts, TDGA was at least as reactive as DTBP in its ability to cross link the internally displayed proteins 1, 2, 4.1, 4.2, and 6. Treatment of resealed ghosts by DTBP produced oligomeric complexes of these proteins plus apparent homooligomeric complexes of hemoglobin. TDGA at the same concentrations did not cross-link any of these components, indicating its membrane-impermeable nature. As the chain length of the homologous series increased from TDGA to TDCA, the cross-linkers became increasingly permeable through the erythrocyte membrane.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...