ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Life Sciences  (1)
  • Promoter  (1)
  • 1
    ISSN: 1617-4623
    Keywords: Asparagine ; gidA ; mioC ; Post-transcriptional control ; Promoter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The expression of the gidA gene which is located immediately counterclockwise of the replication origin of Escherichia coli, oriC, was found to be negatively regulated by the AsnC protein in an in vitro transcription-translation system. This effect is not due to simple repression of transcription originating at the gidA promoter, because the AsnC protein did not change the level of gidA promoter dependent transcription as analysed by promoter-galK fusions and by S1 mapping. From these data we conclude that the AsnC protein controls gidA gene expression at a post-transcriptional level. gidA is the third gene in the oriC region, besides asnA and asnC, whose expression is under AsnC control. However, the mechanisms involved are different: regulation of transcription in the case of asnA and asnC and post-transcriptional control of gidA. The gidA promoter was mapped by deletion analysis and by S1 mapping. We defined two regions that affect promoter activity negatively. Additional transcripts, regulated by Asnc, started more than 300 bp upstream of the gidA promoter and were found to enter the gidA region. These transcripts, originating either at the mioC and/or the ansC promoter traverse the replication origin.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Yeast 12 (1996), S. 965-975 
    ISSN: 0749-503X
    Keywords: act1-1 ; SAC3 ; ConA-labelling ; Life Sciences ; Life Sciences (general)
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: A temperature-sensitive mutation (act1-1) in the essential actin gene of Saccharomyces cerevisiae can be suppressed by mutations in the SAC3 gene. A DNA fragment containing the SAC3 gene was sequenced. SAC3 codes for a 150 kDa hydrophillic protein which does not show any significant similarities with other proteins in the databases. Sac3 therefore is a novel yeast protein. A nuclear localization of Sac3 is suggested by the presence of a putative nuclear localization signal in the Sac3 sequence. A SAC3 disruption mutation was constructed. SAC3 disruption mutants were viable but grew more slowly and were larger than wild-type cells. In contrast to the sac3-1 mutation, the SAC3 disruption was not able to suppress the temperature sensitivity and the osmosensitivity of the act1-1 mutant. This demonstrates that act1-1 suppression by sac3-1 is not the result of a simple loss of SAC3 function. Furthermore, we examined the act1-1 and the sac3 mutants for defects in polarized cell growth by FITC-Concanavalin A (Con A)-labelling. The sac3 mutants showed a normal ConA-labelling pattern. In the act1-1 mutant, however, upon shift to non-permissive temperature, newly synthesized cell wall material, instead of being directed towards the bud, was deposited at discrete spots in the mother cell.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...