ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5028
    Keywords: Arthrobacter globiformis ; choline oxidase ; codA gene ; glycinebetaine ; salt tolerance ; Synechococcus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Choline oxidase, isolated from the soil bacterium Arthrobacter globiformis, converts choline to glycinebetaine (N-trimethylglycine) without a requirement for any cofactors. The gene for this enzyme, designated codA, was cloned and introduced into the cyanobacterium Synechococcus sp. PCC 7942. The codA gene was experssed under the control of a strong constitutive promoter, and the transformed cells accumulated glycinebetaine at intracellular levels of 60–80 mM. Consequently the cells acquired tolerance to salt stress, as evaluated in terms of growth, accumulation of chlorophyll and photosynthetic activity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5079
    Keywords: Key words ; Photosystem 2 ; oxygen evolution ; Mn cluster ; o-phenanthroline ; LiClO4 ; electron transport
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We examined the effects of o-phenanthroline and LiClO4 on oxygen evolution and electron transport in the Photosystem 2 complex of the pea. Treatment of Photosystem 2 particles with a combination of 3.0 mM o-phenanthroline and 1.0 M LiClO4 for 30–40 min at 0°C decreased the oxygen-evolving activity with the electron acceptor (either phenyl-p-benzoquinone or 2,6-dichlorophenol indophenol) to less than 5% of the original level. However with the same treatment, the electron-transport activity from an artificial electron donor, 1,5-diphenylcarbohydrazide, to 2,6-dichlorophenol indophenol remained at 60% of the original activity. The amount of manganese in the Photosystem 2 complex decreased in parallel with the loss of oxygen evolution following treatment. These observations suggest that the treatment of the Photosystem 2 complex with o-phenanthroline and LiClO4 inhibits electron transport on the oxygen-evolving side much more significantly than on the electron-acceptor side.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5028
    Keywords: choline oxidase ; codA gene ; photo-induced inactivation ; transformed Arabidopsis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Arabidopsis thaliana was transformed with the codA gene from Arthrobacter globiformis. This gene encodes choline oxidase, an enzyme that converts choline to glycinebetaine. The photosynthetic activity, monitored in terms of chlorophyll fluorescence, of transformed plants was more tolerant to light stress than that of wild-type plants. This enhanced tolerance to light stress was caused by acceleration of the recovery of the photosystem II (PS II) complex from the photo-inactivated state. The transformed plants synthesized glycinebetaine, but no changes were detected in the relative levels of membrane lipids or in the relative levels of fatty acids in the various membrane lipids. Transformation with the codA gene increased levels of H2O2, a by-product of the reaction catalyzed by choline oxidase, by only 50% to 100% under stress or non-stress conditions. The activity of ascorbate peroxidase and, to a lesser extent, that of catalase in transformed plants were significantly higher than in the wild-type plants. These observations suggest that H2O2 produced by choline oxidase in the transformed plants might have stimulated the expression of H2O2 scavenging enzymes, with resultant maintenance of the level of H2O2 within a certain limited range. It appears that glycinebetaine produced in vivo, but not changes in membrane lipids or in the level of H2O2, protected the PS II complex in transformed plants from damage due to light stress.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...