ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Applied mathematics and mechanics 21 (2000), S. 995-1001 
    ISSN: 1573-2754
    Keywords: viscoelastic beam ; differential equation of motion ; Leaderman relation ; Galerkin method ; O175.29
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Mathematics , Physics
    Notes: Abstract The integro-partial-differential equation that governs the dynamical behavior of homogeneous viscoelastic beams was established. The material of the beams obeys the Leaderman nonlinear constitutive relation. In the case of two simply supported ends, the mathematical model is simplified into an integro-differential equation after a 2nd-order truncation by the Galerkin method. Then the equation is further reduced to an ordinary differential equation which is convenient to carry out numerical experiments. Finally, the dynamical behavior of 1 st-order and 2 nd-order truncation are numerically compared.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Nonlinear dynamics 20 (1999), S. 309-317 
    ISSN: 1573-269X
    Keywords: nonlinear oscillations ; chaos ; control ; input-output linearization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract The control of chaotic oscillations is investigated in this paper. A control methodology, termed input-output linearization, is modified by locally linearizing the nonlinear control law in the small neighborhood of the control goal. Its suitability for controlling chaotic oscillators is analyzed. The forced Duffing oscillator is treated as a numerical example of controlling chaotic motion to a given fixed point and a given period-2 motion. The control signals and time needed to achieve the desired goals of the modified method are compared with those of the original method. The robustness of the control law is demonstrated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...