ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: The 2002 eruption of Nyiragongo volcano constitutes the most outstanding case ever of lava flow in a big town. It also represents one of the very rare cases of direct casualties from lava flows, which had high velocities of up to tens of kilometer per hour. As in the 1977 eruption, which is the only other eccentric eruption of the volcano in more than 100 years, lava flows were emitted from several vents along a N–S system of fractures extending for more than 10 km, from which they propagated mostly towards Lake Kivu and Goma, a town of about 500,000 inhabitants. We assessed the lava flow hazard on the entire volcano and in the towns of Goma (D.R.C.) and Gisenyi (Rwanda) through numerical simulations of probable lava flow paths. Lava flow paths are computed based on the steepest descent principle, modified by stochastically perturbing the topography to take into account the capability of lava flows to override topographic obstacles, fill topographic depressions, and spread over the topography. Code calibration and the definition of the expected lava flow length and vent opening probability distributions were done based on the 1977 and 2002 eruptions. The final lava flow hazard map shows that the eastern sector of Goma devastated in 2002 represents the area of highest hazard on the flanks of the volcano. The second highest hazard sector in Goma is the area of propagation of the western lava flow in 2002. The town of Gisenyi is subject to moderate to high hazard due to its proximity to the alignment of fractures active in 1977 and 2002. In a companion paper (Chirico et al., Bull Volcanol, in this issue, 2008) we use numerical simulations to investigate the possibility of reducing lava flow hazard through the construction of protective barriers, and formulate a proposal for the future development of the town of Goma.
    Description: In press
    Description: on line first
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Lava flow ; Nyiragongo ; Volcanic hazard ; Numerical simulations ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Mt. Nyiragongo is one of the most dangerous volcanoes in the world for the risk associated with the propagation of lava flows. In 2002 several vents opened along a huge system of fractures, pouring out lava which reached and destroyed a considerable part of Goma, a town of about 500,000 inhabitants on the shore of Lake Kivu. In a companion paper (Favalli et al. in Bull Volcanol, this issue, 2008) we employed numerical simulations of probable lava flow paths to evaluate the lava flow hazard on the flanks of the volcano, including the neighbouring towns of Goma (DRC) and Gisenyi (Rwanda). In this paper we use numerical simulations to investigate the possibility of significantly reducing the lava flow hazard in the city through the construction of protective barriers. These barriers are added to the DEM of the area as additional morphological elements, and their effect is evaluated by repeating numerical simulations with and without the presence of barriers. A parametric study on barrier location, size, shape and orientation led to the identification of barriers which maximize protection while minimizing their impact. This study shows that the highest hazard area corresponding to eastern Goma, which was largely destroyed by lava flows in 2002, cannot be effectively protected from future lava flows towards Lake Kivu and should be abandoned. On the contrary, the rest of the town can be sheltered from lava flows by means of two barriers that deviate or contain the lava within the East Goma sector. A proposal for the future development of the town is formulated, whereby “new” Goma is completely safe from the arrival of lava flows originating from vents outside its boundaries. The proposal minimizes the risk of further destruction in town due to future lava flows.
    Description: In press
    Description: on line first
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Lava flow ; Nyiragongo ; Volcanic hazard ; Hazard mitigation ; Numerical simulations ; Lava barriers ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Mt. Nyiragongo is one of the most dangerous volcanoes in the world for the risk associated with the propagation of lava flows. In 2002 several vents opened along a huge system of fractures, pouring out lava which reached and destroyed a considerable part of Goma, a town of about 500,000 inhabitants on the shore of Lake Kivu. In a companion paper (Favalli et al. in Bull Volcanol, this issue, 2008) we employed numerical simulations of probable lava flow paths to evaluate the lava flow hazard on the flanks of the volcano, including the neighbouring towns of Goma (DRC) and Gisenyi (Rwanda). In this paper we use numerical simulations to investigate the possibility of significantly reducing the lava flow hazard in the city through the construction of protective barriers. These barriers are added to the DEM of the area as additional morphological elements, and their effect is evaluated by repeating numerical simulations with and without the presence of barriers. A parametric study on barrier location, size, shape and orientation led to the identification of barriers which maximize protection while minimizing their impact. This study shows that the highest hazard area corresponding to eastern Goma, which was largely destroyed by lava flows in 2002, cannot be effectively protected from future lava flows towards Lake Kivu and should be abandoned. On the contrary, the rest of the town can be sheltered from lava flows by means of two barriers that deviate or contain the lava within the East Goma sector. A proposal for the future development of the town is formulated, whereby “new” Goma is completely safe from the arrival of lava flows originating from vents outside its boundaries. The proposal minimizes the risk of further destruction in town due to future lava flows.
    Description: Published
    Description: 375-387
    Description: 2.1. TTC - Laboratorio per le reti informatiche, GRID e calcolo avanzato
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Lava flow ; Nyiragongo ; Volcanic hazard ; Hazard mitigation ; Numerical simulations ; Lava barriers ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: An application of LiDAR (Light Detection and Ranging) intensity for the identification and mapping of different lava flows from the Mt. Etna (Italy) active volcano is described. In September 2004 an airborne LiDAR survey was flown over summit sectors of Mt. Etna. The information derived from LiDAR intensity values was used to compare the lava flows with respect to their age of emplacement. Analysed lava flows vary in age between those dating prior to AD 1610 and those active during the survey (2004-2005 eruptions). The target-emitter distance, as well as surface roughness and texture at the LiDAR footprint scale, are the main parameter controlling the intensity response of lava flows. Variations in the roughness and texture of surfaces at a meter scale result from two main processes, initial lava cooling and subsequent surface weathering; both lead to variations in the original surface roughness of the flow. In summary: i) initially, from the time of emplacement, the LiDAR intensity of lava flow surfaces decreases; ii) about 6 years after emplacement the LiDAR intensity of lava surfaces starts to increase with the age of flows. LiDAR capability in terms of geometric (accuracy of ~ 1 m in plan position and less than 1 m in elevation) and spectral (LiDAR intensity depends on surface reflection at λ= 1.064 μm) information can thus be effectively used to map lava flows and define a relative chronology of lava emplacement.
    Description: Published
    Description: open
    Keywords: Lava flow ; LiDAR ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: The 2002 eruption of Nyiragongo volcano constitutes the most outstanding case ever of lava flow in a big town. It also represents one of the very rare cases of direct casualties from lava flows, which had high velocities of up to tens of kilometer per hour. As in the 1977 eruption, which is the only other eccentric eruption of the volcano in more than 100 years, lava flows were emitted from several vents along a N–S system of fractures extending for more than 10 km, from which they propagated mostly towards Lake Kivu and Goma, a town of about 500,000 inhabitants. We assessed the lava flow hazard on the entire volcano and in the towns of Goma (D.R.C.) and Gisenyi (Rwanda) through numerical simulations of probable lava flow paths. Lava flow paths are computed based on the steepest descent principle, modified by stochastically perturbing the topography to take into account the capability of lava flows to override topographic obstacles, fill topographic depressions, and spread over the topography. Code calibration and the definition of the expected lava flow length and vent opening probability distributions were done based on the 1977 and 2002 eruptions. The final lava flow hazard map shows that the eastern sector of Goma devastated in 2002 represents the area of highest hazard on the flanks of the volcano. The second highest hazard sector in Goma is the area of propagation of the western lava flow in 2002. The town of Gisenyi is subject to moderate to high hazard due to its proximity to the alignment of fractures active in 1977 and 2002. In a companion paper (Chirico et al., Bull Volcanol, in this issue, 2008) we use numerical simulations to investigate the possibility of reducing lava flow hazard through the construction of protective barriers, and formulate a proposal for the future development of the town of Goma.
    Description: Published
    Description: 363-374
    Description: 2.1. TTC - Laboratorio per le reti informatiche, GRID e calcolo avanzato
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Lava flow ; Nyiragongo ; Volcanic hazard ; Numerical simulations ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...