ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-01-16
    Description: The need to return high mass payloads is driving the development of a new class of vehicles, Deployable Entry Vehicles (DEV) for which feasible and optimized control architectures have not been developed. The Pterodactyl project, seeks to advance the current state-of-the-art for entry vehicles by developing a design, test, and build capability for DEVs that can be applied to various entry vehicle configurations. This paper details the efforts on the NASA-funded Pterodactyl project to investigate multiple control techniques for the Lifting Nano-ADEPT (LNA) DEV. We design and implement multiple control architectures on the LNA and evaluate their performance in achieving varying guidance commands during entry.First we present an overview of DEVs and the Lifting Nano-ADEPT (LNA), along with the physical LNA configuration that influences the different control designs. Existing state-of-the-art for entry vehicle control is primarily propulsive as reaction control systems (RCS) are widely employed. In this work, we analyze the feasibility of using both propulsive control systems such as RCS to generate moments, and non-propulsive control systems such as aerodynamic control surfaces and internal moving mass actuations to shift the LNA center of gravity and generate moments. For these diverse control systems, we design different multi-input multi-output (MIMO) state-feedback integral controllers based on linear quadratic regulator (LQR) optimal control methods. The control variables calculated by the controllers vary, depending on the control system being utilized and the outputs to track for the controller are either the (i) bank angle or the (ii) angle of attack and sideslip angle as determined by the desired guidance trajectory. The LQR control design technique allows the relative allocation of the control variables through the choice of the weighting matrices in the cost index. Thus, it is easy to (i) specify which and how much of a control variable to use, and (ii) utilize one control design for different control architectures by simply modifying the choice of the weighting matrices.By providing a comparative analysis of multiple control systems, configurations, and performance, this paper and the Pterodactyl project as a whole will help entry vehicle system designers and control systems engineers determine suitable control architectures for integration with DEVs and other entry vehicle types.
    Keywords: Launch Vehicles and Launch Operations
    Type: ARC-E-DAA-TN69596 , AIAA SciTech Forum and Exposition; Jan 06, 2020 - Jan 10, 2020; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-01-17
    Description: The NASA-funded Pterodactyl project is a design, test, and build capability to (i) advance the current state of the art for Deployable Entry Vehicle (DEV) guidance and control (G&C), and (ii) determine the feasibility of control system integration for various entry vehicle types including those without aeroshells. This capability is currently being used to develop control systems for one such unconventional entry vehicle, the Lifting Nano-ADEPT (LNA) vehicle. ADEPT offers the possibility of integrating control systems directly onto the mechanically deployed structure and building hardware demonstrators will help assess integration and design challenges. Control systems based on aerodynamic control surfaces, mass movement, and reaction control systems (RCS) are currently being investigated for a down-select to the most suitable control architecture for the LNA.To that effect, in this submission, we detail the efforts of the Pterodactyl project to develop a series of hardware demonstrators for the different LNA control systems. Rapid prototypes, for a set of quarter- model or eighth-model vehicle segments, will be developed for all three architectures to validate mechanical design assumptions, and hardware-in-the-loop (HIWL) control approaches. A ground test control system demonstrator will be designed and built after the trade study is complete. The industrial-grade demonstrator will be designed so that it can be incorporated into a HWIL simulation to further validate the findings of the initial trade study. The HWIL simulation will leverage the iPAS environment developed at NASA's Johnson Space Center which facilitates integration testing to support technology maturation and risk reduction, necessary elements for the hardware demonstration development detailed in this paper.
    Keywords: Launch Vehicles and Launch Operations
    Type: ARC-E-DAA-TN69600 , AIAA SciTech Forum and Exposition; Jan 06, 2020 - Jan 10, 2020; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...