ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2014-07-10
    Beschreibung: Full-waveform inversion (FWI) of shallow-seismic surface waves is able to reconstruct lateral variations of subsurface elastic properties. Line-source simulation for point-source data is required when applying algorithms of 2-D adjoint FWI to recorded shallow-seismic field data. The equivalent line-source response for point-source data can be obtained by convolving the waveforms with $\sqrt{t^{-1}}$ ( t : traveltime), which produces a phase shift of /4. Subsequently an amplitude correction must be applied. In this work we recommend to scale the seismograms with $\sqrt{2 r v_{\rm ph}}$ at small receiver offsets r , where v ph is the phase velocity, and gradually shift to applying a $\sqrt{t^{-1}}$ time-domain taper and scaling the waveforms with $r\sqrt{2}$ for larger receiver offsets r . We call this the hybrid transformation which is adapted for direct body and Rayleigh waves and demonstrate its outstanding performance on a 2-D heterogeneous structure. The fit of the phases as well as the amplitudes for all shot locations and components (vertical and radial) is excellent with respect to the reference line-source data. An approach for 1-D media based on Fourier–Bessel integral transformation generates strong artefacts for waves produced by 2-D structures. The theoretical background for both approaches is presented in a companion contribution. In the current contribution we study their performance when applied to waves propagating in a significantly 2-D-heterogeneous structure. We calculate synthetic seismograms for 2-D structure for line sources as well as point sources. Line-source simulations obtained from the point-source seismograms through different approaches are then compared to the corresponding line-source reference waveforms. Although being derived by approximation the hybrid transformation performs excellently except for explicitly back-scattered waves. In reconstruction tests we further invert point-source synthetic seismograms by a 2-D FWI to subsurface structure and evaluate its ability to reproduce the original structural model in comparison to the inversion of line-source synthetic data. Even when applying no explicit correction to the point-source waveforms prior to inversion only moderate artefacts appear in the results. However, the overall performance is best in terms of model reproduction and ability to reproduce the original data in a 3-D simulation if inverted waveforms are obtained by the hybrid transformation.
    Schlagwort(e): Seismology
    Print ISSN: 0956-540X
    Digitale ISSN: 1365-246X
    Thema: Geologie und Paläontologie
    Publiziert von Oxford University Press im Namen von The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2014-07-10
    Beschreibung: Equivalent line-source seismograms can be obtained from shallow seismic field recordings by (1) convolving the waveforms with $\sqrt{t^{-1}}$ , (2) applying a $\sqrt{t^{-1}}$ time-domain taper, where t is traveltime and (3) scaling the waveform with $r_{{\rm offset}}\sqrt{2}$ , where r offset is source-to-receiver offset. We require such a procedure when applying algorithms of 2-D adjoint full-waveform inversion (FWI) to shallow-seismic data. Although derived from solutions for acoustic waves in homogeneous full space this simple procedure performs surprisingly well when applied to vertical and radial components of shallow-seismic recordings from hammer blows or explosions. This is the case even in the near field of the force, although the procedure is derived from a far-field approximation. Similar approximative procedures recommended in literature are optimized for reflected waves and do not convert the amplitudes of all shallow seismic wavefield constituents equally well. We demonstrate the suitability of the proposed method for the viscoelastic case by numerical examples as well as analytical considerations. In contrast to the proposed single-trace procedure, integral-transform approaches are exact for all viscoelastic wavefield constituents of the near- and far-field in unknown 1-D-heterogeneous structure. Unfortunately, integral-transform approaches suffer from artefacts in applications to data sampled on 2-D structures. Here, we use the Fourier–Bessel integral transformation as a reference in 1-D heterogeneous structures. We unroll the wave-theoretical background of both approaches in order to demonstrate, why the simplistic single-trace simulation approach derived from the asymptotic acoustic case can perform so well when applied to the shallow elastic wavefield. Further we give recommendations for practical implementation and application to field data of the proposed simulation method and compare to the results of alternative conversion rules. The performance of the conversion procedure to data recorded on 2-D heterogeneous structures is presented in a companion study by FWI reconstruction tests.
    Schlagwort(e): Seismology
    Print ISSN: 0956-540X
    Digitale ISSN: 1365-246X
    Thema: Geologie und Paläontologie
    Publiziert von Oxford University Press im Namen von The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    ISSN: 0022-328X
    Schlagwort(e): Cyclooctatetraenyl ; Early transition metals ; Half-sandwich complexes ; Lanthanides ; Pyrazolylborate ; Titanium
    Quelle: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Thema: Chemie und Pharmazie
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...