ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • LUNAR AND PLANETARY EXPLORATION  (1)
  • Rubredoxin  (1)
  • 1
    ISSN: 1573-5001
    Keywords: J coupling ; 113Cd ; 199Hg ; Rubredoxin ; Hydrogen bonding
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary A method is described for measurement of small unresolvable heteronuclear J couplings. The method is based on quantitative analysis of a phase-purged heteronuclear spin-echo difference spectrum, and is demonstrated for measuring1H-113Cd and1H-199Hg J couplings in metal-substituted rubredoxin (Mr ∼ 5.4 kDa) fromPyrococcus furiosus. Couplings from cadmium to backbone amide protons that are hydrogen bonded to the Cys-S atoms directly bonded to Cd vary from smaller than 0.3 to 1.8 Hz; a ‘through-space’ coupling between Cd and the protons of an alanine methyl group was measured to be 0.3 Hz. Couplings to199Hg are significantly larger and fall in the 0.4–4 Hz range.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-28
    Description: A radiative-thermal conduction model for the vertical thermal structure of Io's atmosphere is developed with solar heating by SO2 absorption in UV and near-IR bands and non-local thermodynamic equilibrium (LTE) cooling by SO2 nu(sub 1), nu(sub 2), nu(sub 3), vibrational bands and rotational lines. The model predicts the existence of a mesopause in Io's atmosphere when the surface pressure exceeds approximately 10 nbar. The radiative time constant for establishing a mesosphere/mesopause on Io is only approximately 20 min, whereas the thermospheric radiative time constant is about 1 hr. These time constants are significantly shorter than the diurnal time scale and competitive with dynamic time scales. In the thermosphere when solar UV heating dominates, the asymptotic thermospheric temperature is approximately 270 K, only 140 K greater than the surface temperature because at high altiudes non-LTE cooling by SO2 rotation lines exceeds cooling in the nu(sub 2) virbrational band. Solar-heating-only modles are incapable of generating warm enough atmospheres to satisfy the observational inferences from UV and especially millimeter-wave meausrements. Joule heating driven by the penetration of Jupiter's corotational electric field into Io's conducting ionosphere is demonstrated to be the dominant heating mechanism in the subnanobar regions of Io's atmosphere with tempertures ranging from 150 to 1000 K as a function of decreasing pressure from 1 to 0.1 nbar, The asymoptotic thermospheric temperature can attain a value as high as 1800 K.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Icarus (ISSN 0019-1035); 111; 1; p. 18-30
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...