ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-4943
    Keywords: cyclic AMP derivatives ; affinity labels ; chemical modification of enzymes ; nucleotide affinity labels ; cAMP phosphodiesterase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The syntheses of two potential cAMP affinity lables, 1,N 6-(3-iodopropyleno)adenosine 3′,5′-cyclic-monophosphate and 2′-O-(2-iodo-3-hydroxypropyl) adenosine 3′,5′-cyclic-monophosphate, by a two-step chemical procedure are described. TheN 6- and 2′-O-allyl intermediates were prepared selectively by alkylation of cAMP in organic and alkaline aqueous solutions, respectively. Treatment of theN 6-allyl derivative withN-iodosuccinimide resulted in iodine addition to the double bond and cyclization to theN 1 position of the purine ring. The iodohydrin analog was synthesized by reaction of 2′-O-allyl-cAMP with potassium iodide and thallium trichloride in acetate buffered solution. The products were isolated by column chromatography and characterized by thin-layer chromatography, elemental analysis, and ultraviolet,13C, and1H NMR spectroscopy. The cAMP analogs were found to react with lysine and cysteine. Both cAMP derivatives were tested for their reaction with the low-K m cAMP phosphodiesterase of human platelets. The ribose-substituted analog functioned as a competitive inhibitor (K I =0.72 μM) and caused a time-dependent irreversible inactivation of the phosphodiesterase. In contrast, the purine-substituted derivative acted neither as a reversible competitive inhibitor nor as an irreversible inactivator of the enzyme. These results indicate the specificity of these potential cAMP analogs in their interaction with the phosphodiesterase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4943
    Keywords: Kininogen ; cathepsin B ; cathepsin H ; cysteine protease inhibitor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Domain 3 (D3) of human kininogens, the major cysteine proteinase inhibitors in plasma, has been shown to be the tightest binding inhibitory domain for cathepsins B and H. D3 was expressed in three fragments as its exon products as follows: exon 7 (Gly235-Gln292), exon 8 (Gln292-Gly328), and exon 9 (Gln329-Met357). Exon products 7, 8, and 9 alone as well as exon product 7 + 9 each exhibited an IC50 value 5- to 30-fold higher (5–30μM) than exon products 7 + 8 and 8 + 9 (0.9–1.3μM) for cathepsins B and H, respectively. However, in turn, the exon products 7 + 8 and 8 + 9 seemed to be less potent inhibitors than the intact D3 (10, 200 nM) or HK (200, 500 nM) molecule. These results clearly indicate that an intact molecule of HK or its domain 3 as a whole is required for optimal inhibition of cathepsins B and H.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...