ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1991-11-01
    Description: Voltage-dependent ion channels respond to changes in the membrane potential by means of charged voltage sensors intrinsic to the channel protein. Changes in transmembrane potential cause movement of these charged residues, which results in conformational changes in the channel. Movements of the charged sensors can be detected as currents known as gating currents. Measurement of the gating currents of the Drosophila Shaker potassium channel indicates that the charge on the voltage sensor of the channels is progressively immobilized by prolonged depolarizations. The charge is not immobilized in a mutant of the channel that lacks inactivation. These results show that the region of the molecule responsible for inactivation interacts, directly or indirectly, with the voltage sensor to prevent the return of the charge to its original position. The gating transitions between closed states of the channel appear not to be independent, suggesting that the channel subunits interact during activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bezanilla, F -- Perozo, E -- Papazian, D M -- Stefani, E -- GM30376/GM/NIGMS NIH HHS/ -- GM43459/GM/NIGMS NIH HHS/ -- HL37044/HL/NHLBI NIH HHS/ -- R01 GM043459/GM/NIGMS NIH HHS/ -- R01 GM043459-09/GM/NIGMS NIH HHS/ -- R01 GM043459-10/GM/NIGMS NIH HHS/ -- R01 GM043459-11/GM/NIGMS NIH HHS/ -- R01 GM043459-12/GM/NIGMS NIH HHS/ -- R01 GM043459-13/GM/NIGMS NIH HHS/ -- R01 GM043459-14/GM/NIGMS NIH HHS/ -- R01 GM043459-15/GM/NIGMS NIH HHS/ -- R01 GM043459-15S1/GM/NIGMS NIH HHS/ -- R01 GM043459-16/GM/NIGMS NIH HHS/ -- R01 GM043459-17/GM/NIGMS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1991 Nov 1;254(5032):679-83.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, UCLA School of Medicine 90024.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1948047" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Drosophila/physiology ; *Ion Channel Gating/drug effects ; Kinetics ; Mutagenesis, Site-Directed ; Oocytes/drug effects/physiology ; Potassium Channels/drug effects/genetics/*physiology ; Tetraethylammonium ; Tetraethylammonium Compounds/pharmacology ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1987-08-14
    Description: On the basis of electrophysiological analysis of Shaker mutants, the Shaker locus of Drosophila melanogaster has been proposed to encode a structural component of a voltage-dependent potassium channel, the A channel. Unlike sodium channels, acetylcholine receptors, and calcium channels, K+ channels have not been purified biochemically. To facilitate biochemical studies of a K+ channel, genomic DNA from the Shaker locus has been cloned. Rearrangements in five Shaker mutants have been mapped to a 60-kilobase segment of the genome. Four complementary DNA clones have been analyzed. These clones indicate that the Shaker gene contains multiple exons distributed over at least 65 kilobases of genomic DNA in the region where the mutations mapped. Furthermore, the gene may produce several classes of alternatively spliced transcripts. Two of the complementary DNA clones have been sequenced and their sequences support the hypothesis that Shaker encodes a component of a K+ channel.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Papazian, D M -- Schwarz, T L -- Tempel, B L -- Jan, Y N -- Jan, L Y -- NS15963/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1987 Aug 14;237(4816):749-53.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2441470" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cloning, Molecular ; DNA/*genetics/isolation & purification ; Drosophila melanogaster/*genetics ; Exons ; *Ion Channels ; Membrane Proteins/*genetics ; Mutation ; Nucleic Acid Hybridization ; Potassium/*metabolism ; RNA Splicing ; Transcription, Genetic ; Translocation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1987-08-14
    Description: Potassium currents are crucial for the repolarization of electrically excitable membranes, a role that makes potassium channels a target for physiological modifications that alter synaptic efficacy. The Shaker locus of Drosophila is thought to encode a K+ channel. The sequence of two complementary DNA clones from the Shaker locus is reported here. The sequence predicts an integral membrane protein of 70,200 daltons containing seven potential membrane-spanning sequences. In addition, the predicted protein is homologous to the vertebrate sodium channel in a region previously proposed to be involved in the voltage-dependent activation of the Na+ channel. These results support the hypothesis that Shaker encodes a structural component of a voltage-dependent K+ channel and suggest a conserved mechanism for voltage activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tempel, B L -- Papazian, D M -- Schwarz, T L -- Jan, Y N -- Jan, L Y -- NS15963/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1987 Aug 14;237(4816):770-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2441471" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Codon ; DNA/*genetics ; Drosophila melanogaster/*genetics ; Electrophorus/genetics ; Genes ; *Ion Channels ; Membrane Proteins/*genetics ; Mutation ; Potassium/*metabolism ; Sodium/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...