ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Environmental geology 39 (2000), S. 963-976 
    ISSN: 1432-0495
    Keywords: Key words Larsemann Hills ; Antarctica ; Trace metals ; Water geochemistry ; Anthropogenic contamination
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Fresh water lakes are found in basement rock basins in the Larsemann Hills, East Antarctica, during the summer months. These lakes constitute a relatively simple natural laboratory to investigate the effects of recent and well-documented anthropogenic impact on a “pristine” environment. Larsemann Hills freshwaters have extremely low salinity (typically 〈1‰), and contain very low concentrations of trace elements of environmental significance such as Pb, U, and Zn. Typical Pb concentrations range from less than 5 ppt to 250 ppt. Although trace metal concentrations appear to be higher in lakes situated in the vicinity of stations, they are consistently lower (by several orders of magnitude, for some elements) than Standard International Drinking Water Guidelines. The chemistry of the lake waters is dominated by sea-spray input. Consequently, it is primarily a function of geographical factors, such as distance from the shore and exposure to winds. Shallow-level groundwater and surface water also contribute to the lake chemistry. No evidence was found for contamination from global air circulation. Although contamination resulting from activities at the research stations is generally near or below detection levels, very low levels of trace metal anthropogenic contamination were found in the vicinity of some research stations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: The geochemical features of the volatiles dissolved in artesian thermal waters discharged over three basins (Millungera, Galilee and Cooper basin) of the Australian Great Artesian Basin (GAB) consistently indicate the presence of fluids from multiple gas sources located in the crust (e.g. sediments, oil reservoirs, granites) as well as minor but detectable contributions of mantle/magma-derived fluids. The gases extracted from 19 water samples and analyzed for their chemical and isotopic composition exhibit amounts of CO2 up to about 340 mlSTP/LH2O marked by a δ13CTDC (Total Dissolved Carbon) ranging from −16.9 to +0.18‰ vs PDB, while CH4 concentrations vary from 4.4 × 10−5 to 4.9 mlSTP/LH2O. Helium contents were between 9 and N2800 times higher than equilibrium with Air Saturated Water (ASW), with a maximum value of 0.12 mlSTP/LH2O. Helium isotopic composition was in the 0.02–0.21 Ra range (Ra = air-normalized 3He/4He ratio). The three investigated basins differ from each other in terms of both chemical composition and isotopic signatures of the dissolved gases whose origin is attributed to both mantle and crustal volatiles. Mantle He is present in the west-central and hottest part of the GAB despite no evidence of recent volcanism.Wefound that the partial pressure of helium, significantly higher in crustal fluids than in mantle-type volatiles, enhances the crustal He signature in the dissolved gases, thus masking the original mantle contribution. Neotectonic activity involving deep lithospheric structures and magma intrusions, highlighted by recent geophysical investigations, is considered to be the drivers of mantle/magmatic volatiles towards the surface. The results, although pertaining to artesian waters froma vast area of N542,000 km2, provide newconstraints on volatile injection, and showthat fluids' geochemistry can provide additional and independent information on the geo-tectonic settings of the Great Artesian Basin and its geothermal potential.
    Description: Published
    Description: 75-88
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: dissolved gases ; great artesian basin ; mantle fluids ; tectonic structures ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...