ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Numerical Linear Algebra with Applications 1 (1994), S. 477-504 
    ISSN: 1070-5325
    Keywords: Domain decomposition ; Preconditioning ; Iterative methods ; Nonsymmetric and/or indefinite elliptic problems ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics
    Notes: In recent years, competitive domain-decomposed preconditioned iterative techniques of Krylov-Schwarz type have been developed for nonsymmetric linear elliptic systems. Such systems arise when convection-diffusion-reaction problems from computational fluid dynamics or heat and mass transfer are linearized for iterative solution. Through domain decomposition, a large problem is divided into many smaller problems whose requirements for coordination can be controlled to allow effective solution on parallel machines. A central question is how to choose these small problems and how to arrange the order of their solution. Different specifications of decomposition and solution order lead to a plethora of algorithms possessing complementary advantages and disadvantages. In this report we compare several methods, including the additive Schwarz algorithm, the classical multiplicative Schwarz algorithm, an accelerated multiplicative Schwarz algorithm, the tile algorithm, the CGK algorithm, the CSPD algorithm, and also the popular global ILU-family of preconditioners, on some nonsymmetric or indefinite elliptic model problems discretized by finite difference methods. The preconditioned problems are solved by the unrestarted GMRES method. A version of the accelerated multiplicative Schwarz method is a consistently good performer.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...