ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 33 (2006): L14605, doi:10.1029/2006GL026316.
    Description: The Luzon Strait transport, as an index for the South China Sea throughflow, has attracted much attention. In this study the interannual variability of the Luzon Strait transport is examined, using the Island Rule and results from an ocean general circulation model. Transport variability obtained from these two approaches are consistent with each other. Assessment of contribution from each integral segment involved in the Island Rule indicates that wind stress in the western and central equatorial Pacific is the key factor regulating the interannual variability of the Luzon Strait transport, whereas the effect of local wind stress in the vicinity of the Luzon Strait is secondary. Analysis also shows that when the westerly (easterly) wind anomalies in the tropical Pacific break out, the Luzon Strait transport increases (decreases), consistent with the variations in the North Equatorial Current during El Niño (La Niña) events.
    Description: This research was supported by NSF of China (Grants Nos. 40136010 and 40406006). YD and TQ were supported by the National Aeronautics and Space Administration through grant NAG5-12756, and TQ also supported by Japan Agency for Marine-Earth Science and Technology through its sponsorship of the International Pacific Research Center.
    Keywords: Island Rule ; Wind stress ; South China Sea throughflow
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © Science in China Press and Springer, 2006. This is the author's version of the work. It is posted here by permission of Science in China Press and Springer for personal use, not for redistribution. The definitive version was published in Chinese Science Bulletin 51, Supple. 2 (2006): 50-58.
    Description: Analysis based on the “Island Rule” and ocean assimilation dataset shows that the interannual variability of the Indonesian Throughflow and the Luzon Strait (South China Sea) Throughflow is out of phase. Wind anomaly in the equatorial Pacific plays an important role in setting up this phase relation. During El Niño events, the westerly wind bursts intensify the Northern Equator Current and induce a northward shift of its bifurcation point. As a result, the partition of volume transport between the Kuroshio and the Mindanao Current is changed, with the Kuroshio transport decreased and the Mindanao Current increased. The undershooting/overshooting phenomena occur at the Luzon Strait and the Sulawesi-Mindanao passage, caused by variability of these two currents. Water transport from the Pacific to the South China Sea increases with the Kuroshio transport decreased, and transport from the Pacific to the Indian Ocean decreases with the Mindanao Current transport increased. Therefore, the interannual variability of the Indonesian Throughflow and the Luzon Strait Throughflow is out of phase.
    Description: This work was supported by the National Natural Science Foundation of China (Grant No: 40136010, 40520140074).
    Keywords: Island Rule ; Indonesian throughflow ; Luzon Strait Throughflow ; Undershooting/overshooting
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...