ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © IEEE, 2004. This article is posted here by permission of IEEE for personal use, not for redistribution. The definitive version was published in IEEE Journal of Oceanic Engineering 29 (2004): 1249-1263, doi:10.1109/JOE.2004.834173.
    Description: Between late April and May 23, 2001, a suite of acoustic and oceanographic sensors was deployed by a team of U.S., Taiwan, and Singapore scientists in the northeastern South China Sea to study the effects of ocean variability on low-frequency sound propagation in a shelfbreak environment. The primary acoustic receiver was an L-shaped hydrophone array moored on the continental shelf that monitored a variety of signals transmitted along and across the shelfbreak by moored sources. This paper discusses and contrasts the fluctuations in the 400-Hz signals transmitted across the shelfbreak and measured by the vertical segment of the listening array on two different days, one with the passage of several huge solitons that depressed the shallow isotherms to near the sea bottom and one with a much less energetic internal wavefield. In addition to exhibiting large and rapid temporal changes, the acoustic data show a much more vertically diffused sound intensity field as the huge solitons occupied and passed through the transmission path. Using a space-time continuous empirical sound-speed model based on the moored temperature records, the observed acoustic intensity fluctuations are explained using coupled-mode physics.
    Description: This work was supported by the U.S. Office of Naval Research.
    Keywords: Intensity fluctuations ; Nonlinear internal waves ; Shallow water acoustics ; South China Sea (SCS)
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 1369570 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: The Nantucket Shoals Flux Experiment (NSFE79) was conducted across the continental shelf and upper slope south of Nantucket from March, 1979 to April , 1980 to measure the flow of shelf water from the Georges Bank/Gulf of Maine region into the Middle Atlantic Bight. Conceived as a cooperative field experiment involving the Northeast Fisheries Center (NMFS), U.S. Geological Survey (Woods Hole), University of New Hampshire, and the Woods Hole Oceanographic Institution, the experiment contained two principal components, a moored array of current meter and bottom instrumentation deployed at six locations across the shelf and upper slope spanning a depth range from 46 m to 810 m, and a series of 27 hydrographic surveys made along or near the moored array line during the experiment. A basic description of the NSFE79 hydrographic data has been given in Part 1 by Wright (1983). A description of the moored array components and the basic moored array data sets is presented here in Part 2.
    Description: The NEFC participation was supported by the NMFS Marine Resources Monitoring, Assessment, and Prediction (MARt-1AP) Program. The U.S. Bureau of Land Management (BLM) supported the USGS field and analysis component under t~emoranda of Understanding M550-MU6-79, M551-MU8- 24, M551-MU9-4, and M551-MU0-18. The WHO! and UNH field programs were supported by the National Science Foundation under Grants OCE 78-19513 and OCE 78-26229.
    Keywords: Oceanography ; Hydrography ; Ocean currents ; Moored arrays
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...