ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 171 (1976), S. 1-30 
    ISSN: 1432-0878
    Keywords: Integument ; Anguilla ; Ultrastructure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The morphology and ultrastructure of the lateral body integument of the leptocephalus, glass eel, pigmented elver, and adult stages of the American eel, Anguilla rostrata, were examined with light and electron microscopy. The integument consists of an epidermis separated by a basal lamina from the underlying dermis. Three cell types are present in the epidermis in all stages. Filament-containing cells, which are the principal structural cell type, are increasingly numerous at each stage. Mucous cells, which secrete the mucous that compose the mucous surface coat, are also more numerous in each subsequent stage and are more numerous in the anterior lateral body epidermis than in the posterior lateral body epidermis of the adult. Club cells, whose function is unknown, are most numerous in the glass eel and pigmented elver. Chloride cells are common in the leptocephalus which is marine and infrequent in the glass eel. They are not present in the pigmented elver and adult which inhabit estuaries and fresh-water. Lymphocytes and melanocytes are also present in some stages. The dermis comprises two layers: a layer of collagenous lamellae, the stratum compactum, and an underlying layer of loose connective tissue, the stratum spongiosum. There is a progressive increase in epidermal thickness at each stage which is paralleled by an increase in the thickness of the stratum compactum. Rudimentary scales are present in the dermis of the adult. The increase in the number of epidermal filament-containing cells, epidermal thickness and stratum compactum thickness is correlated with an increased need for protection from abrasion and mechanical damage as the eel moves from a pelagic, oceanic habitat to a benthic, freshwater habitat. The increase in mucous cell numbers is likewise correlated with an increased need for the protective and anti-bacterial action of the mucous surface coat in the freshwater environment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...