ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-18
    Description: The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18,1999 and Aqua spacecraft on May 4,2002. It achieved its final orbit and began Earth observations on February 24, 2000 for Terra and June 24, 2002 for Aqua. A comprehensive set of remote sensing algorithms for cloud masking and the retrieval of cloud physical and optical properties has been developed by members of the MODIS atmosphere science team. The archived products from these algorithms have applications in climate change studies, climate modeling, numerical weather prediction, as well as fundamental atmospheric research. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. We will describe the various cloud properties being analyzed on a global basis from both Terra and Aqua, and will show characteristics of cloud optical and microphysical properties as a function of latitude for land and ocean separately, and contrast the statistical properties of similar cloud types in various parts of the world.
    Keywords: Instrumentation and Photography
    Type: International Geoscience and Remote Sensing Symposium; Jul 21, 2003 - Jul 25, 2003; Toulouse; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-01-04
    Description: Studies of the atmospheres of our solar system's planets including our own require a comprehensive set of observations, relying on instruments on spacecraft, aircraft, balloons, and on the surface. These instrument systems perform one or both of the following: 1) provide information leading to a basic understanding of the relationship between atmospheric systems and processes, and 2) serve as calibration references for satellite instrument validation. Laboratory personnel define requirements, conceive concepts, and develop instrument systems for spaceflight missions, and for balloon, aircraft, and ground-based observations. Balloon and airborne platforms facilitate regional measurements of precipitation, cloud systems, and ozone from high-altitude vantage points, but still within the atmosphere. Such platforms serve as stepping-stones in the development of space instruments. Satellites provide nearly global coverage of the Earth with spatial resolutions and repetition rates that vary from system to system. The products of atmospheric remote sensing are invaluable for research associated with water vapor, ozone, trace gases, aerosol particles, clouds, precipitation, and the radiative and dynamic processes that affect the climate of the Earth. These parameters also provide the basic information needed to develop models of global atmospheric processes and weather and climate prediction. Laboratory scientists also participate in the design of data processing algorithms, calibration techniques, and the data processing systems.
    Keywords: Instrumentation and Photography
    Type: GSFC-E-DAA-TN74725 , NASA/TP–2005–212783 , TM–2005–212783 , 2005-01150-0
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...