ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: The Indian Summer Monsoon (ISM) is one of the main components of the Asian summer monsoon. It is well known that one of the starting mechanisms of a summer monsoon is the thermal contrast between land and ocean and that sea surface temperature (SST) and moisture are crucial factors for its evolution and intensity. The Indian Ocean, therefore, may play a very important role in the generation and evolution of the ISM itself. A coupled general circulation model, implemented with a high resolution atmospheric component, appears to be able to simulate the Indian summer monsoon in a realistic way. In particular, the features of the simulated ISM variability are similar to the observations. In this study, the relationships between ISM and Tropical Indian Ocean (TIO) SST anomalies are investigated, as well as the ability of the coupled model to capture those connections. The recent discovery of the Indian Ocean Dipole Mode (IODM) may suggest new perspectives in the relationship between ISM and TIO SST. A new statistical technique, the Coupled Manifold, is used to investigate the TIO SST variability and its relation with the Tropical Pacific Ocean (TPO). The analysis shows that the SST variability in the TIO contains a significant portion that is independent from the TPO variability. The same technique is used to estimate the amount of Indian rainfall variability that can be explained by the Tropical Indian Ocean SST. Indian Ocean SST anomalies are separated in a part remotely forced from the Tropical Pacific Ocean variability and a part independent from that. The relationships between the two SSTA components and the Indian monsoon variability are then investigated in detail.
    Description: Submitted
    Description: JCR Journal
    Description: open
    Keywords: Indian Ocean ; monsoon ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: manuscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: The Indian Summer Monsoon (ISM) is one of the main components of the Asian summer monsoon. It is well known that one of the starting mechanisms of a summer monsoon is the thermal contrast between land and ocean and that sea surface temperature (SST) and moisture are crucial factors for its evolution and intensity. The Indian Ocean, therefore, may play a very important role in the generation and evolution of the ISM itself. A coupled general circulation model, implemented with a high resolution atmospheric component, appears to be able to simulate the Indian summer monsoon in a realistic way. In particular, the features of the simulated ISM variability are similar to the observations. In this study, the relationships between ISM and Tropical Indian Ocean (TIO) SST anomalies are investigated, as well as the ability of the coupled model to capture those connections. The recent discovery of the Indian Ocean Dipole Mode (IODM) may suggest new perspectives in the relationship between ISM and TIO SST. A new statistical technique, the Coupled Manifold, is used to investigate the TIO SST variability and its relation with the Tropical Pacific Ocean (TPO). The analysis shows that the SST variability in the TIO contains a significant portion that is independent from the TPO variability. The same technique is used to estimate the amount of Indian rainfall variability that can be explained by the Tropical Indian Ocean SST. Indian Ocean SST anomalies are separated in a part remotely forced from the Tropical Pacific Ocean variability and a part independent from that. The relationships between the two SSTA components and the Indian monsoon variability are then investigated in detail.
    Description: Published
    Description: 3083-3105
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: reserved
    Keywords: Indian Ocean ; monsoon ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Precipitation extremes are expected to increase in a warming climate, thus it is essential to characterise their potential future changes. Here we evalu- ate eight high-resolution Global Climate Model simulations in the twenti- eth century and provide new evidence on projected global precipitation ex- tremes for the 21st century. A significant intensification of daily extremes for all seasons is projected for the mid and high latitudes of both hemispheres at the end of the present century. For the subtropics and tropics, the lack of reliable and consistent estimations found for both the historical and fu- ture simulations might be connected with model deficiencies in the repre- sentation of organised convective systems. Low inter-model variability and good agreement with high-resolution regional observations are found for the twentieth century winter over the Northern Hemisphere mid and high lat- itudes.
    Description: Published
    Description: 4887–4892
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: open
    Keywords: extreme events ; precipitation ; cmip5 ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The central United States is a region for which observational studies have indicated an increase in heavy rainfall. This study uses projections of daily rainfall from 20 state-of-the-art global climate models and one scenario (RCP 8.5) to examine projected changes in extreme rainfall. Analyses are performed focusing on trends in the 90th and 99th percentiles of the daily rainfall distributions for two periods (2006-2045 and 2046-2085). The results of this study indicate a large increase in extreme rainfall in particular over the northern part of the study region, with a much less clear signal over the Great Plains and the states along the Gulf of Mexico.
    Description: Published
    Description: 200-205
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: embargoed_20160624
    Keywords: precipitation ; extreme events ; cmip5 ; climate change ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...