ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1433-4909
    Keywords: Key words Protein stability ; Salt dependence ; Genome stabilization ; In vitro transcription
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The DNA binding and compacting activities of the recombinant (r) archaeal histones rHMfA and rHMfB from Methanothermus fervidus, and rHPyA1 from Pyrococcus species GB-3a, synthesized in Escherichia coli, have been shown to be completely resistant to incubation for 4 h at 95°C in the presence of 1 M KCl. Continued incubation of rHMfA and rHMfB at 95°C resulted in a gradual loss of these activities, and rHMfA and rHMfB lost activity more rapidly at 95°C when the salt environment was reduced to 200 mM KCl. rHPyA1, in contrast, retained full activity even after a 60-h incubation at 95°C in 1 M KCl, and reducing the salt concentration did not affect the heat resistance of rHPyA1. rHPyA1–DNA complexes remained intact at 100°C, and rHPyA1 bound to the template DNA in in vitro transcription reaction mixtures assembled using Pyrococcus furiosus components at 90°C. Transcription in vitro from the P. furiosus gdh promoter was reduced by rHPyA1 binding, in a manner that was dependent on the histone-to-DNA ratio and on the topology of the DNA template. Transcription from circular templates was more sensitive to rHPyA1 binding than transcription from a linear template, consistent with rHPyA1 binding introducing physical barriers to transcription and causing changes in the topology of circular templates that also reduced transcription.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...