ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Accelerometers 〉 ACCELEROMETERS  (2)
  • oil production  (2)
Collection
Keywords
Language
Years
  • 1
    Unknown
    Basel, Boston, Berlin : Birkhäuser
    Keywords: excavation ; oil production ; pore space ; rock damage ; well production
    Description / Table of Contents: Mechanical properties and fluid transport in rocks are intimately linked as deformation of a solid rock matrix immediately affects the pore space and permeability. The coupling of fluid circulation and deformation processes in crustal rocks results in significant complexity of the mechanical and fluid transport behavior. This often poses severe technical and economic problems for reservoir and geotechnical engineering projects involved in oil and gas production, CO2 sequestration, mining and underground waste disposal. The volume results from the 5th Euroconference on Rock Physics and Geomechanics, which was held in Potsdam, Germany in September 2004. Part I of the topical volume mainly contains contributions investigating the nucleation and evolution of crack damage in rocks, new or modified techniques to measure rock fracture toughness and a discussion of upscaling techniques relating mechanical and fluid transport behavior in rocks at different spatial scales. Part II contains contributions discussing fluid flow and transport in rocks as observed on the laboratory scale and in boreholes. The evolution of rock damage pertinent to the stability of underground excavations is studied and scaling relations of elastic properties and seismic events are discussed.
    Pages: Online-Ressource (210 Seiten)
    ISBN: 9783764379933
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Unknown
    Basel, Boston, Berlin : Birkhäuser
    Keywords: excavation ; oil production ; pore space ; rock damage ; well production
    Description / Table of Contents: Mechanical properties and fluid transport in rocks are intimately linked as deformation of a solid rock matrix immediately affects the pore space and permeability. This may result in transient or permanent changes of pore pressures and effective pressures causing rock strength to vary in space and time. Fluid circulation and deformation processes in crustal rocks are coupled, producing significant complexity of mechanical and fluid transport behavior. This often poses severe technical and economic problems for reservoir and geotechnical engineering projects involved in oil and gas production, CO2 sequestration, mining and underground waste disposal. For example, the depletion of hydrocarbon and water reservoirs leading to compaction may have adverse effects on well production. Solution/precipitation processes modify porosity and affect permeability of aquifers and reservoir rocks. Fracture damage from underground excavation will critically influence the long-term stability and performance of waste storage. Part I of this topical volume covers mainly the nucleation and evolution of crack damage in rocks, new or modified techniques to measure rock fracture toughness and a discussion of upscaling techniques relating mechanical and fluid transport behaviour in rocks at different spatial scales. Part II, to be published later in 2006, will include studies investigating the coupling of rock deformation and fluid flow.
    Pages: Online-Ressource (278 Seiten)
    ISBN: 9783764377113
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-02-16
    Description: Abstract
    Description: Between early 2018 and late 2019 the STIMTEC hydraulic stimulation experiment was performed at ca.~130 m below surface at the Reiche Zeche underground research laboratory in Freiberg, Saxony/Germany. The project aimed at gaining insight into the creation and growth of fractures in anisotropic and heterogeneous metamorphic gneiss , to develop and optimise hydraulic stimulation techniques and to control the associated induced seismicity under in situ conditions at the mine-scale. These aspects of failure and associated seismicity are important for the development of enhanced geothermal energy systems. A combined seismic network consisted of 12 single-component acoustic emission sensors (sensitivity 1-100 kHz) and three single-component Wilcoxon accelerometers (sensitivity 50 Hz-25 kHz) were installed in boreholes drilled into the test volume, surrounding the stimulation site (Figure 1). A stimulation borehole with 63 m length was drilled with 15° northward inclination. This data set of 314 active ultrasonic transmission (UT) measurements is supplementary to Boese et al. (2021, in review), which introduces the STIMTEC experiment and its active measurement campaigns. This data set was used to derive an anisotropic velocity model for the STIMTEC rock volume. The active seismic data provided here are from six boreholes (BH09, BH10, BH12, BH15, BH16, BH17) as shown in Figure 1. of the associated data description. There are three tables provided as metadata that contain the STIMTEC sensor coordinates, event information of the 314 UT measurements and the UT picks. The UT measurements were recorded with a sampling rate of 1 MHz and results from an automatic stack of 1024 UT pulses generated by the ultrasonic transmitter and recorded by the STIMTEC sensors. The UT measurements are saved in binary file format (fsf file format). Fsf-files can be processed with FOCI software: https://www.induced.pl/software/foci Each fsf file contains 32768 samples, which corresponds to 0.032768 seconds. All UT event files were manual inspected and phase arrivals identified. These are stored in the fsf-file header as well as in the table STIMTEC_UT_picks.csv.
    Keywords: Ultrasonic transmission ; Acoustic emission sensor ; velocity calibration ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 SEISMIC PROFILE 〉 SEISMIC BODY WAVES ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Accelerometers 〉 ACCELEROMETERS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-07-06
    Description: Abstract
    Description: In 2020 and 2021 the STIMTEC-X hydraulic stimulation experiment was performed at ca.~130 m below surface at the Reiche Zeche underground research laboratory in Freiberg, Saxony/Germany. The project temporally followed the STIMTEC experiment at the same site and aimed at understanding the stress heterogeneity of the anisotropic and metamorphic gneiss rock mass. The STIMTEC-X experiment applied the hydraulic stimulation technique in several boreholes at the mine-scale. Complementary to the stimulations, there were active seismic ultrasonic transmission data acquired before the stimulations. We use a seismic monitoring network consisting of six single-component acoustic emission (AE) sensors (sensitivity 1-60 kHz), six hydrophone-like AE sensors (sensitivity 1-40 kHz) and four to twelve single-component Wilcoxon accelerometers (sensitivity 50 Hz-25 kHz). The AE sensors and remained stationary in sub-horizontal and upwards reaching boreholes, the accelerometers were mostly installed along the tunnel walls with one accelerometer in a shallow borehole in each tunnel, and the hydrophone-like AE sensors were installed in the down-going water filled boreholes, but repositioned for each measurement campaign (Figure 1). This data set of 120 active ultrasonic transmission (UT) measurements is supplementary to Boese et al. (2022, in review), which introduces some of the active measurement campaigns of the STIMTEC-X experiment in detail. The whole data set togetter with the “Ultrasonic transmission measurements from six boreholes from the STIMTEC experiment, Reiche Zeche Mine, Freiberg (Saxony, Germany)” [https://doi.org/10.5880/GFZ.4.2.2021.002] was used to evaluate performance measures such as sensitivity and frequency bandwith, coupling, placement and polarity of the hydrophone-like AE sensor compared to AE sensors. The active seismic data provided here are from seven boreholes (BH01, BH05, BH06, BH10, BH14, BH18, BH19) as shown in Figure 1. There are nine tables provided as metadata of which seven contain the STIMTEC-X sensor coordinates for each measurement campaign, the event information of all the 120 UT measurements and the UT picks. The UT measurements were recorded with a sampling rate of 1 MHz and results from an automatic stack of 1024 UT pulses generated by the ultrasonic transmitter and recorded by the STIMTEC-X sensors. The UT measurements are saved in binary file format (fsf file format). Fsf-files can be processed with FOCI software: https://www.induced.pl/software/foci. Each fsf file contains 32768 samples, which corresponds to 0.032768 seconds. All UT event files were manual inspected and phase arrivals identified. These are stored in the fsf-file header as well as in the table STIMTECX_UT_picks.csv.
    Keywords: Ultrasonic transmission ; Acoustic emission sensor ; velocity calibration ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 SEISMIC PROFILE 〉 SEISMIC BODY WAVES ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Accelerometers 〉 ACCELEROMETERS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...