ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration; Geosciences (General)  (3)
  • INORGANIC AND PHYSICAL CHEMISTRY  (2)
  • Lunar and Planetary Science and Exploration; Inorganic, Organic and Physical Chemistry  (2)
  • 1
    Publication Date: 2013-08-31
    Description: Capture of micrometeorite material from low Earth orbit or dust grains around active comets for return to terrestrial laboratories, capable of practicing the most up to date techniques of chemical isotopic and mineralogical analysis, will greatly enhance our knowledge of primitive material in the solar system. The next generation of space launched cosmic dust collectors will undoubtedly include extremely low density target materials such as silica aerogel as the decelerating and arresting medium. This material has been found to be clean from the point of view of inorganic elements and is thus acceptable for the purpose of harvesting grains to be studied by, for example PIXE, INAA, or SXRF. However, the process used in making aerogel leaves substantial carbon and hydrogen containing residues which would negate their suitability for collection and subsequent investigation of the very important CHON particles. Attempts to precondition aerogel by solvent extraction or heating at 500 C and 750 C in air for 24 hours or under a vacuum of 2(7)(exp -7) torr at 260 C were largely ineffective except that pyrolysis did reduce volatile species. In this investigation we have examined the use of supercritical fluids for the purpose of extracting organic residues. The logic of the new approach is that beyond the supercritical point a substance has the solvating properties of a liquid but the viscosity characteristics of a gas. For example carbon dioxide becomes supercritical at a pressure of 73 atmospheres and a temperature of 31 C; in consequence it can transform to a very powerful and ultraclean solvent. It can dissolve organic matter from low molecular weight up to molecules containing 90 carbon atoms. On release of pressure the fluid reverts to a gas which can easily be pumped away and removed from the substrate being extracted.
    Keywords: INORGANIC AND PHYSICAL CHEMISTRY
    Type: Lunar and Planetary Inst., Twenty-Fourth Lunar and Planetary Science Conference. Part 2: G-M; p 679-680
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-01-25
    Description: A detailed structural and compositional analysis of several impactor residues was performed utilizing transmission electron microscopy, energy dispersive spectroscopy, and electron diffraction. Residues from the interior of several craters in gold surfaces were removed with a tungsten needle, mounted in EMBED-812 epoxy, and ultramicrotomed. The presence in these residues of equilibrated ferromagnesian minerals, recrystallization textures, glass, and melted metal and sulfide bodies decorating grain boundaries is indicative of varying degrees of shock metamorphism in all impact residues we have characterized.
    Keywords: INORGANIC AND PHYSICAL CHEMISTRY
    Type: Lunar and Planetary Inst., Twenty-fourth Lunar and Planetary Science Conference. Part 1: A-F; p 65-66
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: Carbonaceous chondrites exhibit a wide range of aqueous and thermal alteration characteristics. Examples of the thermally metamorphosed carbonaceous chondrites (TMCCs) include the C2-ung/CM2TIVs Belgica (B)-7904 and Yamato (Y) 86720. The alteration extent is the most complete in these meteorites and thus they are considered typical end-members of TMCCs exhibiting complete dehydration of matrix phyllosilicates [1, 2]. The estimated heating conditions are 10 to 10(sup 3) days at 700 C to 1 to 100 hours at 890 C, i.e. short-term heating induced by impact and/or solar radiation [3]. The chemical and bulk oxygen isotopic compositions of the matrix of the carbonate (CO3)-poor lithology of the Tagish Lake (hereafter Tag) meteorite bears similarities to these TMCCs [4]. We investigated the experimentally-heated Tag with the use of Raman spectroscopy to understand how short-term heating affects the maturity of insoluble organic matter (IOM) in aqueously altered meteorites.
    Keywords: Lunar and Planetary Science and Exploration; Inorganic, Organic and Physical Chemistry
    Type: JSC-CN-36530 , METSOC Annual Meeting; Aug 07, 2016 - Aug 12, 2016; Berlin; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: There is excellent evidence that a dynamical instability in the early solar system led to gravitational interactions between the giant planets and trans-Neptunian objects (TNOs). Giant planetary migration triggered by the instability dispersed a disk of primordial TNOs and created a number of small body reservoirs (e.g. the Kuiper Belt, scattered disk, irregular satellites, and the Jupiter/Neptune Trojan populations). It also injected numerous bodies into the main asteroid belt, where modeling shows they can successfully reproduce the observed P and D-type asteroid populations. During the injection era and after implantation, some of these main belt TNOs would have collided with S-class asteroids. Some of this material may have survived as a component of asteroid regolith breccias. Thus, we have been searching for evidence of these impact events in the form of carbonaceous xenoliths in brecciated ordinary chondrites. These xenoliths would have experienced a wide range of impact velocities, and therefore we should expect to see everything between relatively unaltered material to completely shock-melted lithologies. This material might also be different from the carbonaceous chondrites that represent standard C-complex asteroids. A goal of this research is to define useful criteria for distinguishing between these two classes of materials, including O, Cr, N and C isotopes, petrographic characteristics, and chronology.
    Keywords: Lunar and Planetary Science and Exploration; Geosciences (General)
    Type: JSC-E-DAA-TN56751 , Annual Meeting of The Meteoritical Society; Jul 22, 2018 - Jul 27, 2018; Moscow; Russia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-27
    Description: Zag and Monahans (1998) are H chondrite regolith breccias that contain 4.5 GY old halite crystals which in turn contain abundant inclusions of aqueous fluids, solids and organics. We have previously proposed that these halites originated on a hydrovolcanically-active C class asteroid, probably Ceres, or a trans-neptunian object (TNO - or P- or D-class asteroid) injected into the inner solar system during giant planet migration. We have begun a detailed analysis of organics and other solids trapped within the halite, which we hypothesize sample the mantle of the halite parent object, and are examining a halite-bearing C1 chondrite clast also found in Zag, which is similar to the solids in the halite. These investigations will reveal the water-rock interactions on the hydrovolcanically-active parent world.
    Keywords: Lunar and Planetary Science and Exploration; Geosciences (General)
    Type: LPI Paper No. 6041 , LPI Contrib. No. 2085 , JSC-E-DAA-TN56316
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Hydrous carbonaceous chondrites experienced hydration and subsequent dehydration by heating, which resulted in a variety of mineralogical and spectral features [e. g., 1-6]. The degree of heating is classified according to heating stage (HS) II to IV based on mineralogy of phyllosilicates [2], because they change, with elevating temperature, to poorly crystal-line phases and subsequently to aggregates of small secondary anhydrous silicates of mainly olivine. Heating of hydrous carbonaceous chondrites also causes spectral changes and volatile loss [3-6]. Experimental heating of Murchison CM chondrite showed flattening of whole visible-near infrared spectra, especially weakening of the 3m band strength [1, 4, 7]. In order to understand mineralogical, spectral, and compositional changes during heating of hydrous carbonaceous chondrites, we have carried out systematic investigation of mineralogy, reflectance spectra, and volatile composition of hydrated and dehydrated carbonaceous chondrites as well as experimentally-heated hydrous carbonaceous chondrites. In addition, we investigated reflectance spectra of tochilinite that is a major phase of CM chondrites and has a low dehydration temperature (~250degC).
    Keywords: Lunar and Planetary Science and Exploration; Geosciences (General)
    Type: JSC-CN-38488 , Lunar and Planetary Science Conference; Mar 20, 2017 - Mar 24, 2017; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: NWA 8694 is a new chassignite whose constituent minerals are more Fe-rich than those in the other known chassignites (Chassigny and NWA 2737), and may suggest a petrogenetic relationship to nakhlites. In this abstract we report mineralogy of NWA 8694 to infer its cooling rate and redox state, and discuss its thermal and shock history in comparison with other chassignites. NWA 8694 is a cumulate dunite of approximately 2 mm olivine with interstitial pyroxene and feldspar. Olivine is homogeneous (Fo(sub 55-56)), but Ca decreases at the approximately 50-100 micrometer rim (0.25-0.1 wt% CaO). Because the Ca-depleted rim is narrower than those in other chassignites (approximately 50 micrometer), NWA 8694 may have cooled slightly faster than the others (approximately 30 C/yr), but would be in the same order. Pyroxenes are low- and high-Ca pyroxenes, both exhibiting sub-micron exsolution textures (0.2-0.3 micrometer wide lamellae with the spacing of 0.8-1.8 micrometers). Although the low-Ca pyroxene host has an orthopyroxene composition (Wo approximately 2), the EBSD analysis suggests a pigeonite structure (P2(sub 1)/c), which is also reported from the Chassigny pyroxene. The size of exsolution texture is a bit smaller, but broadly similar to those in other chassignites, implying a similar fast cooling rate (35-43 C/yr). Feldspars are isotropic (plagioclase: clustered around An25Or10, K-feldspar: approximately An19Or78), suggestive of extensive shock metamorphism, consistent with undulatory extinction of olivine. Feldspar compositions are around the equilibrium isotherm of approximately 800 C. The olivine and chromite compositions give an equilibration temperature of 760-810 C and logfO2 of QFM+/-0.3. The inferred fast cooling rate and high fO2 of NWA 8694 are both similar to those of Chassigny and NWA 2737, and suggest a common formation condition (e.g., thick lava flow or shallow intrusion) under oxidizing condition. The Fe-rich mineral compositions of NWA 8694 may be due to crystallization from more fractionated melt than the other chassignites. The shock degree of NWA 8694 would be similar to Chassigny, but distinct from NWA 2737 with darkened olivine showing more extensive shock.
    Keywords: Lunar and Planetary Science and Exploration; Inorganic, Organic and Physical Chemistry
    Type: JSC-CN-35692 , Goldschmidt Conference 2016; Jun 26, 2016 - Jul 01, 2016; Yokohama; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...