ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Plastid DNA  (1)
  • photosystem T  (1)
Collection
Publisher
Years
  • 1
    ISSN: 1432-0983
    Keywords: Red algae ; Plastid evolution ; Ribulose-1,5-bisphosphate carboxylase/oxygenase ; Plastid DNA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In the multicellular red alga Antithamnion spec. both rubisco genes (rbcL and rbcS) are encoded on the plastid DNA (ptDNA). Both genes are separated by a short A/T-rich spacer of 100 bp and are cotranscribed into an mRNA of approximately 2.7 kb. These findings are in extensive agreement with those obtained from two unicellular red algae (Porphyridium aerugineum and Cyanidium caldarium). The large subunit (LSU) of rubisco shows an amino acid homology of 82–87% with the LSUs from the two unicellular red algae and only about 55% to LSUs from green algae, higher plants and two cyanobacteria. The small subunit (SSU) of rubisco is more similar to those from the unicellular red algae and two algae which are members of the Chromophyta (about 60% homology) than to cyanobacterial and higher plant proteins (27–36% homology). These data indicate that rhodoplasts originated independently from the chloroplast line. The plastids of chromophytes and rhodophytes appear to be closely related.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5028
    Keywords: glutamate synthase ; GOGAT ; red alga ; plastid evolution ; ammonium fixation ; photosystem T ; psaC
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract An actively transcribed gene (glsF) encoding for ferredoxin-dependent glutamate synthase (Fd-GOGAT) was found on the plastid genome of the multicellular red alga Antithamnion sp. Fd-GOGAT is not plastid-encoded in chlorophytic plants, demonstrating that red algal plastid genomes encode for additional functions when compared to those known from green chloroplasts. Moreover, our results suggest that the plant Fd-GOGAT has an endosymbiotic origin. The same may not be true for NADPH-dependent GOGAT. In Antithamnion glsF is flanked upstream by cpcBA and downstream by psaC and is transcribed monocistronically. Implications of these results for the evolution of GOGAT enzymes and the plastid genome are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...