ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 139 (1984), S. 281-288 
    ISSN: 1432-072X
    Keywords: Marine bacteria ; Deep sea ; Barotolerance ; Barophilism ; Pressure adaptation ; Psychrophilism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Isolations of pressure-adapted deep sea bacteria from depths of 1,400 to 5,100 m resulted in a variety of psychrophilic barotolerant and barophilic strains. Growth rates determined at different pressures indicated a gradual transition between the two types of pressure-adapted isolates. The presence of barotolerant bacteria in deep water, sustained by sinking particulate matter, causes the nonbarophilic response of natural populations, i.e., increased growth after decompression. With increasing pressure-adaptation in barophilic isolates the maximum growth rates at optimum pressures decrease. Thus, the observed general slow-down of microbial activity in the deep sea takes effect regardless of the common occurrence of psychrophilic and barophilic bacteria. The highest degree of barophilism was observed in isolates from nutrient-rich habitats such as intestinal tracts of deep sea animals or decaying carcasses. Detailed studies with an isolate, growing barophilically on a complex as well as a single-carbon-source medium, showed that (1) culturing at pressures lower than optimal for growth resulted in the formation of cell filaments, (2) growth was unaffected by repeated compression/decompression cycles and (3) no perceptible differences in the distribution of radiolabeled carbon from an amino acid mixture occurred in cells grown at, below and above the pressure optimal for growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Society for Microbiology, 2002. This article is posted here by permission of American Society for Microbiology for personal use, not for redistribution. The definitive version was published in Applied and Environmental Microbiology 68 (2002): 316-325, doi:10.1128/AEM.68.1.316-325.2002.
    Description: A coastal marine sulfide-oxidizing autotrophic bacterium produces hydrophilic filamentous sulfur as a novel metabolic end product. Phylogenetic analysis placed the organism in the genus Arcobacter in the epsilon subdivision of the Proteobacteria. This motile vibrioid organism can be considered difficult to grow, preferring to grow under microaerophilic conditions in flowing systems in which a sulfide-oxygen gradient has been established. Purified cell cultures were maintained by using this approach. Essentially all 4',6-diamidino-2-phenylindole dihydrochloride-stained cells in a flowing reactor system hybridized with Arcobacter-specific probes as well as with a probe specific for the sequence obtained from reactor-grown cells. The proposed provisional name for the coastal isolate is "Candidatus Arcobacter sulfidicus." For cells cultured in a flowing reactor system, the sulfide optimum was higher than and the CO2 fixation activity was as high as or higher than those reported for other sulfur oxidizers, such as Thiomicrospira spp. Cells associated with filamentous sulfur material demonstrated nitrogen fixation capability. No ribulose 1,5-bisphosphate carboxylase/oxygenase could be detected on the basis of radioisotopic activity or by Western blotting techniques, suggesting an alternative pathway of CO2 fixation. The process of microbial filamentous sulfur formation has been documented in a number of marine environments where both sulfide and oxygen are available. Filamentous sulfur formation by "Candidatus Arcobacter sulfidicus" or similar strains may be an ecologically important process, contributing significantly to primary production in such environments.
    Description: This work was supported by National Science Foundation grant IBN-9630054.
    Keywords: Sulfide-oxidizing autotrophic bacterium ; Hydrophilic filamentous sulfur
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 1027760 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...