ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Cyanobacteria ; Hydrogenase ; Hydrogen Evolution ; Nitrogenase ; Nitrogen Fixation ; Inhibitors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Nitrogen-fixingAnabaena cylindrica cells are found to evolve hydrogen in high quantities in the presence of CO plus C2H2. Studies with the inhibitors dichlorophenyldimethylurea (DCMU), disalicylidenepropanediamine (DSPD), dibromothymoquinone (DBMIB), undecylbenzimidazole (UDB) and chloro-carbonyl-cyanide-phenylhydrazone (CCCP) and also withAnabaena grown on nitrate- and ammonia-nitrogen show that the H2-formation is due to the ATP-dependent H3O+-reduction catalysed by nitrogenase. In control experiments CO plus C2H2 inhibited the activities of a cell-free hydrogenase fromClostridium pasteurianum. It is concluded that Anabaena has a hydrogenase whose natural function is to recycle the H2 lost by the action of nitrogenase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 118 (1978), S. 177-184 
    ISSN: 1432-072X
    Keywords: Cyanobacteria ; Knallgas reaction ; Hydrogenase ; Hydrogen utilization ; Nitrogenase ; Nitrogen fixation ; Isolated heterocysts ; Anabaena cylindrica ; Nostoc muscorum ; Anabaena variabilis ; Anacystis nidulans ; Cyanophora paradoxa
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Several blue-green algae were surveyed for the occurrence of the hydrogenase which was assayed by the oxyhydrogen or Knallgas reaction in the intact organisms. In aerobically grown cultures, the reaction was detectable in Anabaena cylindrica, Nostoc muscorum and in two Anabaena variabilis species, whereas virtually no activity was observed in Anacystis nidulans and Cyanophora paradoxa. In these latter two algae, the reaction was, however, found after growth under molecular hydrogen for several days, which drastically increased the activity levels with all the algae tested. In the nitrogen fixing species, the activity of the Knallgas reaction was enhanced when all combined nitrogen was omitted from the media. H2 and hydrogenase could not significantly support the CO2-fixation in photoreduction experiments with all blue-green algae investigated here. Hydrogenase was assayed by the dithionite and methyl viologen dependent evolution of hydrogen and was found to be present with essentially the same specific activity levels in preparations of both heterocysts and vegetative cells from Anabaena cylindrica. Na2S2O4 as well as H2 supported the C2H2-reduction of the isolated heterocysts. The H2-dependent C2H2-reduction did not require the presence of oxygen but was strictly light-dependent where H2 served as an electron donor to photosystem I of these cells. It is concluded that hydrogen can be utilized by two different pathways in blue-green algae.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 114 (1977), S. 43-49 
    ISSN: 1432-072X
    Keywords: Cyanobacteria ; Anabaena ; Hydrogenase ; Hydrogen-uptake ; Nitrogenase ; Nitrogen fixation ; Protection mechanism ; Inhibitors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The blue-green alga Anabaena cylindrica is found to consume molecular hydrogen in a hydrogenase dependent reaction. This hydrogen uptake proceeds in the dark and is strictly dependent on oxygen, thus representing a Knallgas reactions. Its rate is almost as high as that of the endogenous respiration in Anabaena. Studies with inhibitors reveal that hydrogen is utilized via the complete respiratory chain providing additional energy for the alga. CO plus C2H2 completely block the Knallgas reaction which explains the previously reported considerable increase in the total H2 formation representing the difference between the nitrogenase-dependent H2-evolution and the reutilization of the gas catalysed by the hydrogenase in intact Anabaena. H2 is able to support the C2H2-reduction in the dark in a reaction again strictly dependent on oxygen. Moreover, H2 is also consumed in experiments carried out under far red light and in the presence of dichlorophenyl-dimenthyl-urea (DCMU) where the energy for nitrogen fixation is no longer provided by respiration but by cyclic photophosphorylation. Under these conditions, H2 is found to supply electrons for the formation of C2H4 from C2H2 in a reaction no longer dependent on the presence of oxygen. Moreover, in these experiments, the presence of H2 stabilizes the C2H2-reduction activity against the deleterious effect of oxygen. Thus, this communication provides evidence for a triplicate function of the H2-uptake catalysed by hydrogenase in intact Anabaena which is (a) to provide energy by the Knallgas reaction, (b) to supply reducing equivalents for nitrogenase, (c) to protect nitrogenase from damage by oxygen.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Chemie Ingenieur Technik - CIT 69 (1997), S. 1248-1248 
    ISSN: 0009-286X
    Keywords: Chemistry ; Industrial Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Chemie Ingenieur Technik - CIT 69 (1997), S. 903-912 
    ISSN: 0009-286X
    Keywords: Chemistry ; Industrial Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Sedimentation superimposed on industrial cake filtration leads to longer filtration times and often has a detrimental effect on subsequent process steps such as washing and demoisturing. The influence of sedimentation is seldom recognised in laboratory filtration experiments. Methods are presented for evaluation of pressure filter experiments with superimposed sedimentation which avoid the error made in the usual evaluation methods. For the case of zone sedimentation the article presents a graphical evaluation and a numerical method of modelling permitting scale up to any desired cake height. In superimposed classifying sedimentation simultaneous measurement of filtrate volume and cake height provide information about local variation in filter cake resistance. It is shown for a model system that, owing to sedimentation, the cake resistance shows a minimum at mean cake height and increases rapidly towards greater heights. The local cake resistance corelates with particle size distributions measured for layers of a horizontally cut filter cake. The method of evaluation presented permints determination of the flow resistance of the uppermost layers of a cake and hence estimation of the gas pressure necessary for demoisturing. The profiles of local filter cake resistance show that the relative cake layering is largely independent of the level of suspension filling. A scale-up model is presented for use in those cases where classifying sedimentation cannot be suppressed.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Chemie Ingenieur Technik - CIT 71 (1999), S. 1421-1425 
    ISSN: 0009-286X
    Keywords: Chemistry ; Industrial Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...