ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1433-0768
    Keywords: Key words Silver electrode ; Sodium carbonate ; Sodium perchlorate ; Pitting corrosion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The electrochemical behaviour of polycrystalline silver electrodes in Na2CO3 solutions was studied under potentiodynamic and potentiostatic conditions and complemented with X-ray diffraction analysis. Potentiodynamic E/i anodic curves exhibit active passive transition prior to an oxygen evolution reaction. The active region involves a small peak AI followed by a major peak AII before the passive region. Peak AI is assigned to the formation of an Ag2O layer while peak AII is due to the formation of an Ag2CO3 layer. The height of the anodic peaks increases with increasing Na2CO3 concentration, scan rate and temperature. The effect of increasing additions of NaClO4 on the electrochemical behaviour of Ag in Na2CO3 solutions was investigated. The perchlorate ions stimulate the active dissolution of Ag, presumably as a result of the formation of soluble AgClO4 salt. In the passive region, ClO− 4 ions tend to break down the dual passive film, leading to pitting corrosion at a certain critical pitting potential. The pitting potential decreases with ClO− 4 concentration. Potentiostatic current/time transients showed that the formation of Ag2O and Ag2CO3 layers involves a nucleation and growth mechanism under diffusion control. However, in the presence of ClO− 4 ions, the incubation time for pit initiation decreases on increasing the anodic potential step.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 61 (1981), S. 227-242 
    ISSN: 1573-5036
    Keywords: Amico acids ; Carbon dioxide evolution ; Casein ; Decomposition ; Glucose ; Humification ; Mineralization ; Respiration rate ; Phenolic compounds
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The course of the CO2 evolution rates of soil samples has been followed continuously in the absence and in the presence of various organic compounds. After an incubation period of 300 hours at 13 and 20°C the CO2 evolution from pasture soil (containing 1.76% soil organic carbon) amounted to 0.13 and 0.44μg CO2−C.g soil−1.h−1, respectively. For arable soil (containing 1.20% soil organic carbon) the rates amounted to 0.04 and 0.09 μg CO2−C.g soil−1.h−1, respectively. At 20°C larger amounts of the organic substrates added to the soil supplied with 20 μg NH4NO3−N.g soil−1 were lost as CO2 than at 13°C, indicating a higher efficiency of the growth of microorganisms at lower temperatures. In the absence of NH4NO3 the respiration rates were initially higher than in its presence, suggesting that a part of the soil microflora is inhibited by low concentrations of NH4NO3. The amounts of carbon lost were low for phenolcarboxylic acids with OH groups in the ortho position. The replacement of one of these groups by a methoxyl group resulted in a larger amount of the C lost as CO2. The replacement of the COOH group by a C=C−COOH group had a decreasing effect on the decomposition of the phenolic acids tested. The decomposition of vanillic acid,p-hydroxybenzoic acid, and of the benzoic acids with OH groups in the meta position was as complete as that of glucose, amino acids or casein. The decomposition of bacterial cells to CO2 was considerably less than that of glucose. No evidence could be obtained that the low percentage of substrate converted to CO2 at the time of maximal respiration rate was due to the decreasing diffusion rate of substrate to the microbial colonies in the soil during the consumption of substrate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...