ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (37)
  • Data
  • Humans  (27)
  • Surface physics, nanoscale physics, low-dimensional systems  (10)
Collection
  • Articles  (37)
  • Data
  • 1
    Publication Date: 2016-08-03
    Description: Author(s): HoKwon Kim (김호권), Dumitru Dumcenco, Mathieu Frégnaux, Anass Benayad, Ming-Wei Chen, Yen-Cheng Kung, Andras Kis, and Olivier Renault We have evaluated as-grown Mo S 2 crystals, epitaxially grown on a monocrystalline sapphire by chemical vapor deposition (CVD), with direct electronic band-structure measurements by energy-filtered k -space photoelectron emission microscopy performed with a conventional laboratory vacuum ultraviolet He… [Phys. Rev. B 94, 081401(R)] Published Mon Aug 01, 2016
    Keywords: Surface physics, nanoscale physics, low-dimensional systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-01-21
    Description: Author(s): Pai-Yen Chen and Mohamed Farhat We investigate the tunable and switchable optical radiators and metamaterials formed by metallic nanodipole antennas with submicroscopic gaps (1.2 nm), of which linear and third-order nonlinear quantum conductivities are observed due to the photon-assisted tunneling effect. The quantum conductivitie... [Phys. Rev. B 91, 035426] Published Tue Jan 20, 2015
    Keywords: Surface physics, nanoscale physics, low-dimensional systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-11-02
    Description: Author(s): Pei-Wen Chen, Yu-Hsuan Lu, Tay-Rong Chang, Chi-Bin Wang, Li-Yen Liang, Chung-Huang Lin, Cheng-Maw Cheng, Ku-Ding Tsuei, H.-T. Jeng, and S.-J. Tang [Phys. Rev. B 84, 205401] Published Tue Nov 01, 2011
    Keywords: Surface physics, nanoscale physics, low-dimensional systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Physical Society (APS)
    Publication Date: 2011-03-25
    Description: Author(s): Ying-Yen Liao The heat capacity of an adsorbed-molecule system is systematically investigated in electric fields. The energy spectrum is evaluated to probe the hindered rotation of the molecule. Numerical results demonstrate that the electric field and quantum confinement effect strongly affect the rotational cha... [Phys. Rev. B 83, 115444] Published Thu Mar 24, 2011
    Keywords: Surface physics, nanoscale physics, low-dimensional systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-11-26
    Description: Mutations in the enzyme cytosolic isocitrate dehydrogenase 1 (IDH1) are a common feature of a major subset of primary human brain cancers. These mutations occur at a single amino acid residue of the IDH1 active site, resulting in loss of the enzyme's ability to catalyse conversion of isocitrate to alpha-ketoglutarate. However, only a single copy of the gene is mutated in tumours, raising the possibility that the mutations do not result in a simple loss of function. Here we show that cancer-associated IDH1 mutations result in a new ability of the enzyme to catalyse the NADPH-dependent reduction of alpha-ketoglutarate to R(-)-2-hydroxyglutarate (2HG). Structural studies demonstrate that when arginine 132 is mutated to histidine, residues in the active site are shifted to produce structural changes consistent with reduced oxidative decarboxylation of isocitrate and acquisition of the ability to convert alpha-ketoglutarate to 2HG. Excess accumulation of 2HG has been shown to lead to an elevated risk of malignant brain tumours in patients with inborn errors of 2HG metabolism. Similarly, in human malignant gliomas harbouring IDH1 mutations, we find markedly elevated levels of 2HG. These data demonstrate that the IDH1 mutations result in production of the onco-metabolite 2HG, and indicate that the excess 2HG which accumulates in vivo contributes to the formation and malignant progression of gliomas.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818760/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818760/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dang, Lenny -- White, David W -- Gross, Stefan -- Bennett, Bryson D -- Bittinger, Mark A -- Driggers, Edward M -- Fantin, Valeria R -- Jang, Hyun Gyung -- Jin, Shengfang -- Keenan, Marie C -- Marks, Kevin M -- Prins, Robert M -- Ward, Patrick S -- Yen, Katharine E -- Liau, Linda M -- Rabinowitz, Joshua D -- Cantley, Lewis C -- Thompson, Craig B -- Vander Heiden, Matthew G -- Su, Shinsan M -- P01 CA104838/CA/NCI NIH HHS/ -- P01 CA104838-05/CA/NCI NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 CA105463/CA/NCI NIH HHS/ -- R01 CA105463-06/CA/NCI NIH HHS/ -- R21 CA128620/CA/NCI NIH HHS/ -- England -- Nature. 2009 Dec 10;462(7274):739-44. doi: 10.1038/nature08617. Epub .〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Agios Pharmaceuticals, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19935646" target="_blank"〉PubMed〈/a〉
    Keywords: Arginine/genetics ; Brain Neoplasms/*genetics/*metabolism/pathology ; Catalytic Domain ; Cell Line ; Crystallography, X-Ray ; Disease Progression ; Enzyme Assays ; Glioma/genetics/metabolism/pathology ; Glutarates/*metabolism ; Histidine/genetics/metabolism ; Humans ; Isocitrate Dehydrogenase/*genetics/*metabolism ; Ketoglutaric Acids/metabolism ; Models, Molecular ; Mutant Proteins/*genetics/*metabolism ; Mutation/genetics ; Protein Conformation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2008-12-09
    Description: Proteins that directly regulate tumour necrosis factor receptor (TNFR) signalling have critical roles in regulating cellular activation and survival. ABIN-1 (A20 binding and inhibitor of NF-kappaB) is a novel protein that is thought to inhibit NF-kappaB signalling. Here we show that mice deficient for ABIN-1 die during embryogenesis with fetal liver apoptosis, anaemia and hypoplasia. ABIN-1 deficient cells are hypersensitive to tumour necrosis factor (TNF)-induced programmed cell death, and TNF deficiency rescues ABIN-1 deficient embryos. ABIN-1 inhibits caspase 8 recruitment to FADD (Fas-associated death domain-containing protein) in TNF-induced signalling complexes, preventing caspase 8 cleavage and programmed cell death. Moreover, ABIN-1 directly binds polyubiquitin chains and this ubiquitin sensing activity is required for ABIN-1's anti-apoptotic activity. These studies provide insights into how ubiquitination and ubiquitin sensing proteins regulate cellular and organismal survival.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2642523/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2642523/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oshima, Shigeru -- Turer, Emre E -- Callahan, Joseph A -- Chai, Sophia -- Advincula, Rommel -- Barrera, Julio -- Shifrin, Nataliya -- Lee, Bettina -- Benedict Yen, T S -- Woo, Tammy -- Malynn, Barbara A -- Ma, Averil -- R01 DK071939/DK/NIDDK NIH HHS/ -- R01 DK071939-01/DK/NIDDK NIH HHS/ -- R01 DK071939-02/DK/NIDDK NIH HHS/ -- R01 DK071939-03/DK/NIDDK NIH HHS/ -- R01 DK071939-04/DK/NIDDK NIH HHS/ -- England -- Nature. 2009 Feb 12;457(7231):906-9. doi: 10.1038/nature07575. Epub 2008 Dec 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of California at San Francisco, 513 Parnassus Avenue, S-1057, San Francisco, California 94143-0451, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19060883" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Animals ; Apoptosis/*physiology ; Cell Line ; DNA-Binding Proteins/chemistry/*metabolism ; Embryonic Development/genetics/*physiology ; Gene Expression Regulation, Developmental ; Humans ; Intracellular Signaling Peptides and Proteins/chemistry/metabolism ; Jurkat Cells ; Mice ; Mice, Knockout ; Molecular Sequence Data ; Sequence Alignment ; Tumor Necrosis Factor-alpha/metabolism ; Ubiquitin/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-06-19
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3766976/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3766976/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dang, Lenny -- White, David W -- Gross, Stefan -- Bennett, Bryson D -- Bittinger, Mark A -- Driggers, Edward M -- Fantin, Valeria R -- Jang, Hyun Gyung -- Jin, Shengfang -- Keenan, Marie C -- Marks, Kevin M -- Prins, Robert M -- Ward, Patrick S -- Yen, Katharine E -- Liau, Linda M -- Rabinowitz, Joshua D -- Cantley, Lewis C -- Thompson, Craig B -- Vander Heiden, Matthew G -- Su, Shinsan M -- R01 CA105463/CA/NCI NIH HHS/ -- England -- Nature. 2010 Jun 17;465(7300):966. doi: 10.1038/nature09132.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20559394" target="_blank"〉PubMed〈/a〉
    Keywords: Age Factors ; Glutarates/*metabolism ; Humans ; Isocitrate Dehydrogenase/*genetics ; Mutation/*genetics ; Neoplasms/*physiopathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-03-23
    Description: Therapeutics that are designed to engage RNA interference (RNAi) pathways have the potential to provide new, major ways of imparting therapy to patients. Long, double-stranded RNAs were first shown to mediate RNAi in Caenorhabditis elegans, and the potential use of RNAi for human therapy has been demonstrated by the finding that small interfering RNAs (siRNAs; approximately 21-base-pair double-stranded RNA) can elicit RNAi in mammalian cells without producing an interferon response. We are at present conducting the first in-human phase I clinical trial involving the systemic administration of siRNA to patients with solid cancers using a targeted, nanoparticle delivery system. Here we provide evidence of inducing an RNAi mechanism of action in a human from the delivered siRNA. Tumour biopsies from melanoma patients obtained after treatment show the presence of intracellularly localized nanoparticles in amounts that correlate with dose levels of the nanoparticles administered (this is, to our knowledge, a first for systemically delivered nanoparticles of any kind). Furthermore, a reduction was found in both the specific messenger RNA (M2 subunit of ribonucleotide reductase (RRM2)) and the protein (RRM2) levels when compared to pre-dosing tissue. Most notably, we detect the presence of an mRNA fragment that demonstrates that siRNA-mediated mRNA cleavage occurs specifically at the site predicted for an RNAi mechanism from a patient who received the highest dose of the nanoparticles. Together, these data demonstrate that siRNA administered systemically to a human can produce a specific gene inhibition (reduction in mRNA and protein) by an RNAi mechanism of action.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855406/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855406/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, Mark E -- Zuckerman, Jonathan E -- Choi, Chung Hang J -- Seligson, David -- Tolcher, Anthony -- Alabi, Christopher A -- Yen, Yun -- Heidel, Jeremy D -- Ribas, Antoni -- CA U54 119347/CA/NCI NIH HHS/ -- U54 CA119347/CA/NCI NIH HHS/ -- U54 CA119347-04/CA/NCI NIH HHS/ -- England -- Nature. 2010 Apr 15;464(7291):1067-70. doi: 10.1038/nature08956. Epub 2010 Mar 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA. mdavis@cheme.caltech.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20305636" target="_blank"〉PubMed〈/a〉
    Keywords: Biopsy ; *Clinical Trials, Phase I as Topic ; *Drug Carriers/administration & dosage/pharmacokinetics ; Drug Delivery Systems ; Gene Knockdown Techniques/*methods ; Humans ; Injections, Intravenous ; Melanoma/drug therapy/enzymology/genetics ; *Nanoparticles/administration & dosage/analysis ; RNA Interference/*drug effects ; RNA, Messenger/analysis/genetics/metabolism ; RNA, Small Interfering/*administration & ; dosage/genetics/*pharmacology/therapeutic use ; Receptors, Transferrin/metabolism ; Ribonucleoside Diphosphate Reductase/biosynthesis/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1989-12-08
    Description: The human retinoblastoma gene (RB1) encodes a protein (Rb) of 105 kilodaltons that can be phosphorylated. Analysis of Rb metabolism has shown that the protein has a half-life of more than 10 hours and is synthesized at all phases of the cell cycle. Newly synthesized Rb is not extensively phosphorylated (it is "underphosphorylated") in cells in the G0 and G1 phases but is phosphorylated at multiple sites at the G1/S boundary and in S phase. HL-60 cells that were induced to terminally differentiate by various chemicals lost their ability to phosphorylate newly synthesized Rb at multiple sites when cell growth was arrested. These findings suggest that underphosphorylated Rb may restrict cell proliferation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mihara, K -- Cao, X R -- Yen, A -- Chandler, S -- Driscoll, B -- Murphree, A L -- T'Ang, A -- Fung, Y K -- 5P30CA14089/CA/NCI NIH HHS/ -- CA 44754/CA/NCI NIH HHS/ -- EY 07846/EY/NEI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1989 Dec 8;246(4935):1300-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Hematology/Oncology and Ophthalmology, Childrens Hospital of Los Angeles, CA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2588006" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Cycle/*genetics ; Cell Division/drug effects/genetics ; Eye Neoplasms/genetics ; *Gene Expression Regulation, Neoplastic ; Humans ; Interphase/genetics ; Neoplasm Proteins/genetics/*metabolism ; Phosphorylation ; Protein Processing, Post-Translational/drug effects/*genetics ; Retinoblastoma/*genetics ; Tretinoin/pharmacology ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2007-11-03
    Description: During pregnancy, maternal pancreatic islets grow to match dynamic physiological demands, but the mechanisms regulating adaptive islet growth in this setting are poorly understood. Here we show that menin, a protein previously characterized as an endocrine tumor suppressor and transcriptional regulator, controls islet growth in pregnant mice. Pregnancy stimulated proliferation of maternal pancreatic islet beta-cells that was accompanied by reduced islet levels of menin and its targets. Transgenic expression of menin in maternal beta-cells prevented islet expansion and led to hyperglycemia and impaired glucose tolerance, hallmark features of gestational diabetes. Prolactin, a hormonal regulator of pregnancy, repressed islet menin levels and stimulated beta-cell proliferation. These results expand our understanding of mechanisms underlying diabetes pathogenesis and reveal potential targets for therapy in diabetes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karnik, Satyajit K -- Chen, Hainan -- McLean, Graeme W -- Heit, Jeremy J -- Gu, Xueying -- Zhang, Andrew Y -- Fontaine, Magali -- Yen, Michael H -- Kim, Seung K -- T32DK007217-32/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2007 Nov 2;318(5851):806-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17975067" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Proliferation ; Diabetes, Gestational/*etiology/metabolism ; Female ; Humans ; Insulin/metabolism ; Insulin-Secreting Cells/*physiology ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Obesity/metabolism ; Pregnancy ; Prolactin/metabolism ; Proto-Oncogene Proteins/*physiology ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...