ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1432
    Keywords: cDNAs ; GAPDH evolutionary tree ; Horizontal gene transfer ; Coding strategies ; Monocotyledons ; Dicotyledons
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The nuclei of plant cells harbor genes for two types of glyceraldehyde-3-phosphate dehydrogenases (GAPDH) displaying a sequence divergence corresponding to the prokaryote/eukaryote separation. This strongly supports the endosymbiotic theory of chloroplast evolution and in particular the gene transfer hypothesis suggesting that the gene for the chloroplast enzyme, initially located in the genome of the endosymbiotic chloroplast progenitor, was transferred during the course of evolution into the nuclear genome of the endosymbiotic host. Codon usage in the gene for chloroplast GAPDH of maize is radically different from that employed by present-day chloroplasts and from that of the cytosolic (glycolytic) enzyme from the same cell. This reveals the presence of subcellular selective pressures which appear to be involved in the optimization of gene expression in the economically important graminaceous monocots.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology 30 (1996), S. 65-75 
    ISSN: 1573-5028
    Keywords: Archaebacteria ; endosymbiosis ; molecular evolution ; isoenzymes ; carbohydrate ; metabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Previous studies indicated that plant nuclear genes for chloroplast and cytosolic isoenzymes of 3-phosphoglycerate kinase (PGK) arose through recombination between a preexisting gene of the eukaryotic host nucleus for the cytosolic enzyme and an endosymbiont-derived gene for the chloroplast enzyme. We readdressed the evolution of eukaryotic pgk genes through isolation and characterisation of a pgk gene from the extreme halophilic, photosynthetic archaebacterium Haloarcula vallismortis and analysis of PGK sequences from the three urkingdoms. A very high calculated net negative charge of 63 for PGK from H. vallismortis was found which is suggested to result from selection for enzyme solubility in this extremely halophilic cytosol. We refute the recombination hypothesis proposed for the origin of plant PGK isoenzymes. The data indicate that the ancestral gene from which contemporary homologues for the Calvin cycle/glycolytic isoenzymes in higher plants derive was acquired by the nucleus from (endosymbiotic) eubacteria. Gene duplication subsequent to separation of Chlamydomonas and land plant lineages gave rise to the contemporary genes for chloroplast and cytosolic PGK isoenzymes in higher plants, and resulted in replacement of the preexisting gene for PGK of the eukaryotic cytosol. Evidence suggesting a eubacterial origin of plant genes for PGK via endosymbiotic gene replacement indicates that plant nuclear genomes are more highly chimaeric, i.e. contain more genes of eubacterial origin, than is generally assumed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...