ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Betaine biosynthesis ; Glycinebetaine ; Hordeum (stress) ; Phospholipid turnover ; Water stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Water and salt stress promote betaine accumulation in leaves of barley (Hordeum vulgare L.) by accelerating the de-novo synthesis of betaine, via choline. Previous radiotracer kinetic studies have implicated stress-enhanced turnover of the choline moiety of phosphatidylcholine (PC) as a major source of choline for betaine synthesis. Two approaches have therefore been followed to show whether stress-induced PC turnover is a cellor organelle-specific phenomenon, or a generalized one. In the first approach, [3H]ethanolamine of high specific activity was supplied to second leaves of unstressed and water-stressed barley plants; after 1 h, paired sections of tissue were excised from each leaf, one for extraction and analysis of [3H]metabolites and the other for autoradiography. The3H-activity remaining in the leaf tissue after washing out the water-soluble3H-metabolites during preparation for autoradiography was taken to be mainly in phospholipids. In unstressed leaves, [3H]phosphatidylethanolamine (PE) was the major labeled phospholipid, whereas there were approximately equal amounts of [3H]PE and [3H]PC in stressed leaves. At the light-microscope level, silver grains were associated with all living cells in both unstressed and stressed leaves; grains were concentrated in the cytoplasmic regions of highly vacuolate mesophyll cells, and were distributed throughout densely cytoplasmic vascular parenchyma. At the electron-microscope level, silver grains were not confined to any particular types of membranes in unstressed or stressed leaves. In the second approach, second leaves of stressed plants received a 1-h pulse of [14C]ethanolamine, and were then homogenized. The brei was subjected to sucrose density gradient centrifugation. The specific radioactivity of [14C]PC was quite similar in the gradient fractions, whether they contained microsomes or mitochondrial plus chloroplast membranes. We infer that stress does not enhance the turnover of any structurally discrete class of PC, but rather stimulates PC turnover in several or all classes of membranes in most cells of the leaf.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...